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Infant eye movements are an important behavioral resource to understand early
human development and learning. But the complexity and amount of gaze data
recorded from state-of-the-art eye-tracking systems also pose a challenge: how
does one make sense of such dense data? Toward this goal, this article describes

an interactive approach based on integrating top-down domain knowledge with
bottom-up information visualization and visual data mining. The key idea
behind this method is to leverage the computational power of the human visual

system. Thus, we propose an approach in which scientists iteratively examine
and identify underlying patterns through data visualization and link those dis-
covered patterns with top-down knowledge ⁄hypotheses. Combining bottom-up

data visualization with top-down human theoretical knowledge through visual
data mining is an effective and efficient way to make discoveries from gaze data.
We first provide an overview of the underlying principles of this new approach
of human-in-the-loop knowledge discovery and then show several examples

illustrating how this interactive exploratory approach can lead to new findings.

INTRODUCTION

Recent advances in computing and sensing technologies have led to signifi-
cant changes in the dominant methodology of science. Bell, Hey, and Szalay
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(2009) predicted that while the first three paradigms of science—empirical,
theoretical, and computational simulation—will continue to make incremen-
tal progress, dramatic breakthroughs will come from the new fourth para-
digm: data-intensive scientific discovery. In brief, more and more scientific
data captured by new instruments across multiple laboratories will become
publically accessible for continued and deeper data analysis, which will
result in the development of many new scientific breakthroughs.

Indeed, data-driven scientific discovery has already become popular in
various research fields, such as earth sciences, medical sciences, biology, and
physics. A survey of 1,700 top scientists across various fields, published in a
recent special issue of Science titled ‘‘Dealing with Data’’ (Science Staff,
2011), shows that more than 60% of these experts have used or generated at
least one data set larger than 1 gigabyte (GB). This result, along with the
other articles in this special issue, suggests that tremendous opportunities
for new research findings come from developing innovative ways to better
analyze large data sets that not only provide a much deeper understanding
of nature and society but also open up many new avenues of research.

In cognitive and behavioral research, technological advances (e.g.,
electroencephalography [EEG], functional magnetic resonance imaging, and
motion tracking) are also leading to dramatic changes in the study of human
behavior. With new technologies, we can ask and address new questions that
we could not before. In this article, we focus on one particular technology:
eye tracking. A state-of-the-art eye-tracking system can capture, with high
spatial and temporal resolution, the moment-by-moment time course of visual
attention. From such data, researchers can analyze and link external eye
movements with underlying cognitive processes that support human behavior
and decision making. Eye movement data are especially important for devel-
opmental science. Compared with well-established measurement methods
used with adults (e.g., reaction time, forced-choice test, and questionnaires),
access to the cognitive processes of preverbal infants is quite limited. Nonethe-
less, what we do know is that from the earliest stage of human development,
infants actively move their eyes to gather information from their environ-
ments, and their eye movements are linked to internal cognitive processes.

The tradition of using gaze to study infant cognition dates back to the
work of Robert Fantz. Fantz (1964) published a remarkable discovery: by
2 months of age, infants habituate to a repeated display, looking less and
less at the screen on successive exposures to the same stimulus. This finding
was incredible for two reasons. Theoretically, Fantz showed that from an
early age, infants retain memories of visual experience over time, suggesting
that early experience can have cascading effects on human development. But
his methodological discovery—that eye movements can be used to access
cognitive processes in young infants—was just as revolutionary. Over the
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last 50 years, researchers have successfully used eye movements in young
infants to investigate a stunning number of aspects of cognitive develop-
ment, from low-level phenomena such as visual attention (Colombo, 2001;
Hayhoe, 2004; Pereira, James, Jones, & Smith, 2010), short-term memory
(Feigenson & Halberda, 2008; Oakes, Ross-Sheehy, & Luck, 2006), and per-
ception of motion (Gilmore & Rettke, 2003) to questions about how infants
track the statistical information in their world (Kirkham, Slemmer, & John-
son, 2002; Xu & Garcia, 2008), how infants learn language (Fernald &
Hurtado, 2006; Graf Estes, Evans, Alibali, & Saffran, 2007; Hollich,
Hirsh-Pasek, & Golinkoff, 2000; Saffran, Aslin, & Newport, 1996; Smith &
Yu, 2008), and even high-level questions about theory of mind (Farroni
et al., 2005; Senju & Csibra, 2008) and the origins of concepts (Carey, 2009).
All of these discoveries rely on gathering, analyzing, and interpreting eye
movement data. Thus, all of these studies, regardless of their different
research goals, are studies of infant eye movements.

The centrality of eye movement data in the analysis of infant cognition
has inspired researchers to refine and extend Fantz’s (1964) habituation par-
adigm (Ashmead & Davis, 1996; Aslin, 2007; Houston-Price & Nakai, 2004;
Sirois & Mareschal, 2002; Thomas & Gilmore, 2004) and to develop a vari-
ety of other diagnostic tools: preferential looking (e.g., Golinkoff, Hirsh-
Pasek, Cauley, & Gordon, 1987), anticipatory looking (e.g., McMurray &
Aslin, 2004), violation of expectation (e.g., Baillargeon & DeVos, 1991; Bail-
largeon, Spelke, & Wasserman, 1985), and even pupil dilation (Jackson &
Sirois, 2009). Further, different metrics are used even within these diverse
paradigms, for instance, proportion of total looking (e.g., Hollich et al.,
2000; McMurray & Aslin, 2004), time to switch from distracter to target
(Fernald & Hurtado, 2006), first look (Kovács & Mehler, 2009), and latency
to look (D’Entremont, Hains, & Muir, 1997; Fernald, Perfors, & March-
man, 2006). Often these measures produce converging evidence (D’Entre-
mont et al., 1997; Mani & Plunkett, 2010), but sometimes they are at odds
(e.g., Arias-Trejo & Plunkett, 2010; Jovancevic-Misic & Hayhoe, 2009).

Taken together, there are several important reasons to develop novel
ways to analyze and decode temporal patterns in gaze data. First, as briefly
reviewed earlier, gaze is a rich source of data for developmental research—a
unique window to access the cognitive systems of young children. Second,
gaze data are highly complex because eye movements are produced moment
by moment by a set of interacting processes: cognitive, perceptual, and
motor (see also Hunter & Ames, 1988). Third, and more importantly, as eye
movements unfold over time, they can be used to study real-time dynamics
of the cognitive systems (Spivey, 2007). Gaze is used to actively gather infor-
mation from the world, binding objects in the physical world to internal cog-
nitive programs moment by moment (Ballard, Hayhoe, Pook, & Rao, 1997).
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Decoding momentary eye movement data is critical to understand how
external sensory data are linked with internal cognitive processes. In the
adult literature, analyses of fine-grained temporal gaze patterns have already
led to breakthroughs in real-time language comprehension (Tanenhaus, Spi-
vey-Knowlton, Eberhard, & Sedivy, 1995), language production (Griffin &
Bock, 2000), visual perception (Henderson, 2003), and perception-action
coupling (Land & Hayhoe, 2001). Finally, a new trend in cognitive and
developmental research is to move beyond well-controlled laboratory tasks
and collect data in more naturalistic situations to understand human behav-
ior in the real world (Aslin, 2009; Franchak, Kretch, Soska, Babcock, &
Adolph, 2010; Frank, Vul, & Johnson, 2009; Hurtado, Marchman, & Fer-
nald, 2008; Smith, Yu, & Pereira, 2011). Compared with most studies con-
ducted in well-controlled experimental environments, this research direction
with more ecological validity not only further tests and confirms whether
existing findings inferred from well-designed experiments also play an essen-
tial role in more naturalistic situations but also leads to new discoveries that
cannot be captured in well-controlled studies. This research venue, however,
also adds particular challenges in data analysis as studies along this line usu-
ally collect data over a longer period of time—that is, more data. In addi-
tion, fewer constraints and free behaviors (e.g., free viewing) in more
naturalistic situations also mean that many factors in such environments
jointly influence gaze behavior—that is, more complex data. Both character-
istics suggest that one may not know in advance exactly what moments
should be focused on in data analysis, how to dissect multiple factors, and
how to select, group, and compare data to extract meaningful, novel, and
statistically reliable patterns.

So how can we analyze such data? Its complexity may initially suggest that
one needs comparably complex statistical or mathematical analyses, which in
turn require one to develop a deep understanding of sophisticated mathemati-
cal methods. Most often, however, the more sophisticated a method is, less
accessible it is as fewer people would be able to understand and use it. This
article presents an alternative solution—a more transparent approach to inte-
grating top-down domain knowledge with bottom-up information visualiza-
tion and visual data mining. The key idea behind this method is to leverage
the computational power of the human perceptual system for pattern discov-
ery. In this approach, scientists iteratively examine and identify underlying
patterns in data and link those discovered patterns with top-down knowl-
edge ⁄hypotheses. This method relies on the combination of bottom-up data
visualization and top-down human theoretical knowledge working together
through visual data mining to lead to new findings. In the following sections,
we first give an overview of the underlying principles of this new approach and
then provide several examples illustrating how it can lead to new discoveries.
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INTERACTIVE DATA ANALYSIS AND VISUAL DATA MINING

An interactive data analysis and visual data mining approach addresses two
major challenges in analyzing gaze data. First, whenever we draw conclu-
sions from gaze data, the final published results take the form of overall sta-
tistics derived from high density gaze streams. Thus, a huge amount of
information must be reduced and summarized to be useful. But statistics
and measures extracted from raw data may exclude embedded patterns or
even be misleading, because multiple steps are involved in reducing raw data
to final statistics and each step involves decisions about both statistical
methods used to compute final results and the parameters of those methods.
Different decisions may change the final outcome dramatically, leading to
different results and consequently different interpretations (see also Shic,
Scassellati, & Chawarska, 2008). We argue that sensible decisions about
microlevel data analysis cannot be completely predetermined but must be
derived at least in part from the structure of the data itself. Most often, even
if we have some predictions from our experimental designs, we nonetheless
lack precise predictions about the structure and patterns of gaze data at the
microlevel. As we cannot specify all of the data analysis details a priori, we
need insights from both top-down knowledge and raw data themselves to
make sensible decisions step by step as we systematically reduce the data to
extract reliable and interesting patterns.

Second, one important goal of analyzing gaze data is to find new patterns
and gain new knowledge from such data. But how can we discover new and
meaningful patterns if we do not know what we are looking for? Although
standard statistics may find a subset of these meaningful patterns, they may
miss a great deal more. We suggest here that visual data mining is a powerful
approach for new pattern discovery. Discovering new knowledge requires
the ability to detect unknown, surprising, novel, and unexpected patterns.
To achieve this goal, our proposed solution is to rely on visualization tech-
niques that allow us to easily spot interesting patterns through both our
visual perception systems and our domain knowledge. This solution is feasi-
ble as it is based on two grounds. First, our eyes are quite sensitive to visual
patterns. Studies in information visualization have convincingly demon-
strated that humans have remarkable perceptual abilities to scan, recognize,
and recall details from visually displayed information, and to detect changes
in size, color, shape, or texture in visually displayed data through just a few
quick glances (Shneiderman, 2002). Second, when our eyes detect patterns,
our mind can naturally interpret those patterns and link them with current
theories based on our domain knowledge. Further, in their book Using
Vision to Think, Card, Mackinlay, and Shneiderman (1999) point out the
crux of visual data mining—visualization techniques are a valuable way to
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visually present data to reveal insights, but that discovery takes place
between the ears. That is, major advances and significant new discoveries
are made by people rather than directly by machine learning or visualization
techniques. In practice, these techniques play a complementary role in assist-
ing scientists to better understand data. Toward this goal, visual data mining
provides an ideal framework for active exploration and sensible reduction of
gaze data through human-in-the-loop knowledge discovery.

Consequently, the exploratory process should be highly iterative and
interactive—visualizing not only raw data, but also the intermediate results
of current statistical computations for further analysis. In this way, statisti-
cal computing and visualization can bootstrap each other—information
visualization based on new results leads to the discovery of more complex
patterns that can in turn be visualized, leading to more findings. Researchers
play a critical role in this human-in-the-loop knowledge discovery by apply-
ing statistical techniques to the data, examining visualization results, and
deciding ⁄directing the research focus based on their theoretical knowledge.
In this way, domain knowledge, computational power, and information
visualization techniques can be integrated together to understand massive
data sets. In the rest of this article, we present several examples of exploring
both raw gaze data and derived patterns through exploratory data analysis.

We note that the goal of this article is to introduce the concept of interac-
tive data analysis, present the general procedure of visual data mining in the
context of gaze data, and demonstrate how using this interactive and explor-
atory approach can lead to reliable and fruitful results. In practice, the idea
of visual data mining and interactive data analysis can be implemented in a
variety of ways, some of which may rely on advanced computational and
visualization algorithms. For the purpose of this article, two visualization
techniques used here are intentionally simple and accessible through popular
data analysis software: (a) visualizing continuous numerical data streams
(e.g., Figures 1, 3, and 4) and continuous categorical streams (e.g., Figures 4
and 5) with different colors; (b) highlighting critical moments in time and
temporal events by adding transparent blocks with different colors on top of
the underlying continuous data streams (e.g., Figures 2, 3, 5, and 6). These
two visualization effects are provided by most data analysis software. For
example, Matlab (The MathWorks Inc., Natick, MA) and R provide draw-
ing functions to assign color and other attributes of lines and blocks. MS
Excel (Microsoft Corp., Seattle, WA) also allows users to manually set up
display properties (e.g., color, texture, and transparency) through graphical
user interfaces. With these two simple visualization techniques, we focus on
how to visualize data and interactively explore potential patterns by follow-
ing the principle ⁄ spirit of human-in-the-loop data exploration advocated in
this article. In addition, more and more open-source programs (e.g., Cyber-
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infrasture system, Börner, 2011; GUESS system, Adar, 2006) are becoming
available for this kind of intelligent data analysis (Yu, Smith, Hidaka, Sche-
utz, & Smith, 2010).

VISUALIZING RAW DATA—THE FIRST STEP

Most commercial eye-tracking systems provide data at multiple levels: raw
gaze data files, derived measures such as user-defined areas of interest
(AOIs), fixations ⁄ saccades, and accumulated statistics such as overall look-
ing aggregated over time. In addition, such systems may also provide addi-
tional data preprocessing functions such as low-pass filter functions for
smoothing, or a gap fill-in function using interpolation to fill in missing data
(e.g., Tobii Studio software). Although these functions are necessary and
useful for reducing the amount of noise in eye-tracking data, it is also impor-
tant for researchers to understand how these functions may unexpectedly
distort raw data. More importantly, it is tempting to use just preprocessed
data (derived measures and summary statistics, etc.) without accessing raw
gaze data, but this may miss critical microlevel structure embedded in gaze
data. Thus, it is both informative and necessary to examine raw data as the
first step of eye movement data analysis. This idea is similar to graphing his-
tograms to check for normality before conducting an analysis of variance.
More generally, what is being discussed here is to access and examine raw
data all the time—not directly jumping into the summarized data, but
instead getting as close as we can to the raw data to ‘‘see’’ what empirical
data can tell us.

We illustrate this point by using an example in which a group of
8-month-old infants watched a clip of a performer producing infant-directed
actions. The performer demonstrated how to put a set of shapes into a shape
sorter—a big plastic ball with holes matched to each of the shapes. One
demonstration of putting a shape into the big ball consisted of a sequence of
actions, starting from picking a shape, to showing it to infants, to rotating
the ball to find the right hole, and to finally putting the shape into the hole.
A similar sequence was repeated with a new shape as the target each time.
As part of this naturalistic infant-directed demonstration, the performer also
simultaneously and frequently generated other actions and social cues to
engage infants, such as smiling, talking, waving her hands, and looking at
infants’ faces. Just like natural behaviors in the real world, these actions
interweave with each other—sometimes two actions were sequentially gener-
ated without a clear boundary to separate the two; sometimes more than
one action was conducted by different modalities (e.g., smiling while holding
a shape).
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Compared with participants in many eye-tracking studies designed to
measure their response to a particular stimulus at a single moment, infants
in this example needed to continuously decide to what information they
attended moment by moment. Different kinds of research questions can be
addressed by analyzing gaze data in this example, such as how infants per-
ceive goal-directed actions, in what ways they are sensitive to social cues
generated by the performer, how they track moving objects, and how they
respond to the performer’s momentary bodily actions. Importantly, these
questions are studied in a naturalistic context in which each action generated
by the performer is embedded in streams of sequential actions from the same
modality and concurrent actions from other modalities. Sequential multi-
modal behaviors produced in more naturalistic studies pose a particular
challenge in data analysis compared with discrete actions in separate trials.
Basically, where should we start in data analysis? Which types of actions,
based on our prior knowledge, may be the best candidates to obtain reliable
patterns from the observers’ gaze data? Would the infants still generate pre-
dictive looking toward objects with the co-presence of social cues from the
performer? Would the infants still be very sensitive to social cues in the con-
text of ongoing manual demonstration? How would they switch their atten-
tion between the performer’s face and objects and would these switches
share similar patterns across individual infants? Would parameters used in
previous data analyses still be applied to this study? Would patterns
extracted in studying a single discrete action (e.g., timing of predictive look-
ing) still hold or would cognitive loads in this more naturalistic (and more
complex) context require additional resources and additional time to process
information and respond? One might come up with so many questions that
it would not be practically feasible to try out all of these ideas one by one in
an ad hoc way given the amount of efforts required in implementing and
examining each idea. Instead, we need a more efficient and systematic way
to quickly identify a few questions among those that are more like to lead to
interesting and reliable patterns. In the following sections, we will use this
example, as representative of infant eye-tracking studies, to illustrate how
we can interactively and visually examine infant eye movement data from
more naturalistic studies.

Figure 1 visualizes several streams of gaze location data recorded from
participants. Each colored stream shows the same location variable (y-
coordinate, etc.) from one of the participants as s ⁄he watched the action
sequence. Most often, visual attention was concentrated on either the
performer’s face (high y values) or objects on the work space (low y val-
ues). Given the output of many eye-trackers and eye-tracking software, it
is relatively easy to quickly calculate predefined statistics, for instance,
average looking time to the ball or the performer’s face or hand.
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Although such results are certainly informative, visualizing the data and
developing new hypotheses about how participants processed the infor-
mation moment by moment will allow for richer and more fine-grained
analyses of the infants’ behavior. In particular, as all of the data streams
in this example are temporally aligned (watching the same video, etc.),
we can easily compare the time series to finding both shared, frequently
occurring patterns and as well as surprising patterns across participants
to inform and guide further quantitative data analysis. In the following
section, we will discuss several different aspects of gaze data observed
through raw data visualization.

Figure 1 Visualizing raw data streams collected from one (top) and multiple (bottom)

participants. By visually exploring multiple streams in parallel (both vertically and hori-

zontally), researchers can easily detect the shared gaze patterns across partici-

pants—those temporal moments that most participants generated the same behaviors or

perceived the same information. Meanwhile, the gaze data also demonstrate individual

differences. Researchers can also identify those individuals who diverge from the whole

group and examine when such deviations occur. Moments labeled (1), (5), and (7) reveal

consistent gaze data while moments labeled (2), (3), (4), (6), and (8) show individual dif-

ferences.

VISUALDATAMININGOFGAZEDATA 41



Group Behavior

Participants as a whole group shared an overall trend: first, looking at the
performer’s face at the moment labeled (1), then, switching to objects at the
moments labeled (2), and then, consistently looking at those objects with
occasional glances back to the face at the moment labeled (3). Shared pat-
terns can be easily spotted by examining multiple time series vertically and
identifying when multiple streams merge into a big ‘‘river.’’ This observation
through visualization is informative in two ways. First, it tells us at what
moments the mean measure is both meaningful and representative of the
whole group. Second, the elaborate relationship between the performer’s
actions and consistent eye movement patterns across participants at those
moments suggest further analyses. For example, one may ask questions
about the latency to look at the face (rather than just the mean duration of
fixation to the face). Further, one may compare the latencies between look-
ing at the face with looking at a target object, or more generally, latencies
between different events (e.g., the performer’s smile as a social event, a
speech act or a manual action) may reveal how different kinds of informa-
tion (e.g., social versus nonsocial; visual versus auditory) were processed in
these events. It is worth noting that the example illustrated in Figure 1
includes only eight participants for the illustration purpose, though in prac-
tice, one may need to work with gaze data from a much larger number of
participants. The overall pattern from a large group can be similar to that of
a small group—a main ‘‘river’’ with minor rivulets; or alternatively, there
may be several ‘‘rivers,’’ each formed by a subset of participants. In the later
case, one can select those individuals sharing similar patterns to be a sub-
group—first studying each subgroup one by one, and then comparing pat-
terns across subgroups.

Individual Differences

This visualization also provides an easy way to see which individuals differed
from the group’s average behavior. Further, we can find easily at what
moments and in what ways those outliers allocated their attention differently.
For example, at the moments labeled (1), when the performer looked toward
observers, all but two of the participants looked to the performer’s face. The
other two participants (in purple and orange red) maintained fixation on an
object at different times. Similarly, only two participants (in red and pink)
looked at the performer’s face at the moments labeled (4) while others
attended to the performer’s hand actions and objects. In addition, we can
also identify some local patterns. For example, at the moments labeled (6),
when the performer was speaking while simultaneously holding an object,
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approximate half of the whole group attended to her face as a response to
her speech and facial expressions, while the rest continued to fixate on the
objects. Without seeing and knowing this essential bimodality, we would be
misled by using the mean of gaze locations to represent the whole group.
Thus, inspection of raw data makes us aware of which assumptions hold,
and which are violated. This data visualization serves as an example to illus-
trate the importance of accessing raw data so that we can better calculate and
interpret derived statistics. One may argue that an alternative way to achieve
this goal would be to extract various statistics (e.g., in addition to mean, also
median, 25 percentile, 75 percentile, histogram, or more complicated statisti-
cal measures). Taken together, those statistics would ultimately allow us to
obtain a better picture of the overall distribution of the data. However, the
power of information visualization is that we can easily and quickly see and
notice regular and irregular patterns with just several glances.

Temporal Acuity

Humans actively move their eyes to gather just-in-time visual information
for real-time internal processes. Thus, examining the dynamics of eye
movements has yielded many insights into how human cognitive and per-
ceptual systems work (Land & Hayhoe, 2001; Tanenhaus et al., 1995).
Visualization of raw data shown in Figure 1 allows us to see the exact
timing of attention switches between the face and objects. For example,
moments labeled (6) show close synchrony across participants in switch-
ing their attention to the performer’s face. Thus, based on visualization,
we learn that extracting and interpreting patterns based on precise timing
between the performer’s actions and participants’ consistent responses at
this particular moment may lead to interesting results. In another case, at
the moments labeled (2), all of the participants switched their attention
from the performer’s face to the objects, but the exact timing differed
across participants, spanning a window of approximately 1.5 sec. This
suggests that timing measures extracted at this moment can serve as a
good candidate to capture individual differences that might predict other
stable behavior patterns. In another moment labeled (8), when the per-
former demonstrated how to put the piece into a hole while generating
an exciting sound to engage observers, in a window of 1.5 sec (from 8.5
to 10 sec), participants mostly focused on the actions and objects but
occasionally glanced at the performer’s face. The exact timing of these
glances varied across participants. This visualized pattern suggests that:
(a) within this particular period of time, they seemed to consistently go
back to check the performer’s face at some time; and (b) with different
timings, they seemed to spend a similar amount of time on the
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performer’s face. Therefore, a reliable pattern in (8) is the average dura-
tion of face look (but not the exacting timing of face look). More gener-
ally, these observations can inform follow-up decisions about what
moments and what aspects of gaze patterns (e.g., attention switches, tim-
ings of those switches, or gaze durations) should receive more rigorous
analysis. What we want to highlight here is the value of visualizing and
examining raw data to reveal both regular and irregular patterns in raw
data, and consequently, to make more informed decisions. If we skip this
step and simply derive some statistical measures without taking the raw
data into account, statistical analyses alone would be noisier (at best) or
misleading (at worst).

Spatial Acuity

Human visual acuity varies across the visual field. The foveal region
occurs at the center of gaze having the highest acuity that is concerned
with high spatial frequency information with fine details, and the periph-
ery is used to evaluate coarse information with low spatial frequency. In
light of this, in addition to microlevel temporal patterns, raw gaze data
provide high-resolution spatial information—exact gaze locations but not
just AOIs. For example, at the moments labeled (1), even though most
participants looked at the face, they fixated on different parts of the face
(with different y values). This provides useful information on the follow-
ing AOI definition—should the whole face be defined as an AOI or
should different parts of the face (e.g., eye and mouth areas) be individual
AOIs? Thus, as defining AOIs and reducing raw gaze data into AOI
streams is a necessary step in most data analyses, examining raw gaze
locations can lead us to make more careful decisions on finding appropri-
ate spatial resolutions to define AOIs without losing useful information.

To summarize, visualizing raw data allows researchers to quickly gather
information on various aspects of eye movements, such as group behavior,
individual differences, and temporal and spatial patterns. This information
is critical to subsequent statistical analysis in two important ways. First,
the information encoded in raw data may be filtered in high-level derived
statistics. For instance, AOI-based representations do not have high spa-
tial resolution. Similarly, accumulated looking times do not contain tem-
poral information that can be critical in many perception, vision, and
action experiments. By visually examining raw data, we can get a better
sense of inherent properties of gaze data which can provide critical
insights to guide us to determine which aspects of the data to focus on
next and which sensible parameters to be chosen in the following data
analysis. Second, data visualization and examination is an efficient way to
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conduct exploratory data analysis as we can simultaneously detect and
examine multiple potentially interesting patterns and then actively connect
what we see with top-town theories and principles to identify gaze patterns
that either confirm our hypothesis and support existing theories or dis-
cover new patterns and new findings that may ultimately lead to new
advances. Subsequently, these patterns need to be quantified using mathe-
matical and statistical techniques. But the real intellectual challenge in
this venture comes not from quantification, but from initial exploratory
pattern discovery.

EVENT-BASED TEMPORAL PATTERN DISCOVERY

Given a first round of visually examining raw data, the next step is to inves-
tigate further and extract reliable patterns. The idea of exploratory gaze data
analysis we propose here follows the general principles of building scientific
data visualization systems: ‘‘overview, zoom & filter, details-on-command’’
(Shneiderman, 1996, p. 337, 2002). More specifically, we start by examining
raw data and then zoom into particular moments for closer investigation.
Further, this process is iterative; we may go back to the overview mode and
select another subset of data to be closely examined.

This exploratory data analysis is implemented through event-based pat-
tern discovery. The central idea is to define moments-of-interest using a tem-
poral event representation and then study how eye movement data
dynamically change within and outside of individual events. Formally, an
event variable y= {<y1, ts1, te1> ,<Y2, ts2, te2>,…<ym, tsm, tem>} is a set
of time intervals with onset tsm, and offset tem timestamps of each instance
of a specific event ym. For example, the time intervals when a certain visual
stimulus is displayed can be represented as an event variable; the time when
a sound or a spoken word is played can be captured as another event; and
the moment that an performer is smiling or waving her hands can be defined
as another event. In practice, an event variable can be defined both from
top-down knowledge and experimental design, and from bottom-up pat-
terns discovered from raw data. In general, there are four ways that an event
can be defined and extracted:

• Events based on experimental design: In a typical eye-tracking exper-
iment, visual and auditory stimuli are presented at certain moments
in time. Therefore ,we can define events based on stimulus presenta-
tions to capture appearance and disappearance of certain visual
stimuli, onsets and offsets of spoken words, and durations of exe-
cuted actions (smiling or laughing).
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• Events based on top-town knowledge: Based on research questions
asked in the study, we most often have specific hypotheses and pre-
dictions about what moments in time might be interesting. Predic-
tions based on top-down knowledge can be captured by event
representations to allow us to further examine exactly what happen
at those moments. For example, if we predict that participants may
look at the target hole even before the performer put the correspond-
ing shape into the hole, we can create an inserting-shape event and
examine gaze patterns right before this event.

• Events based on bottom-up patterns: Events can also be extracted
based on bottom-up patterns observed in examining raw data. For
example, the highlighted areas in Figure 1 (labeled 3, 5, and 7) can
form a new event depicting those moments during which the major-
ity of participants consistently gazed at the same locations. Then we
can use that event to determine what leads to this consistency and
why it ends. Thus, we define an event based on a certain aspect of
gaze data and then use it to further study other aspects of gaze data.

• Combined events: In addition, we can generate high-order events
(e.g., A^B) based on two basic events A and B, each of which can be
either a top-down or bottom-up event. For example, a combined
event can be defined as the moments that the performer is smiling
while talking (i.e., combining the smiling event with the talking
event), or the moments during which both a target visual object is
displayed and a spoken word is heard (i.e., combining a spoken word
event with a visual object event).

As shown in Figure 2, events can be presented as colored bars, with
lengths corresponding to their durations. Visualizing temporal events them-
selves allows us to examine how frequently each temporal event happens

Figure 2 Visualization of temporal events. Each event type is represented by one

unique color. The overlapping between colors creates a new color indicating a logical

conjunction of more than one event.
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over time, how long each instance of an event takes, how one event relates
to other events, and whether an event appears more or less periodically or
whether there are other trends over time. All of those potential (repeated or
unique) patterns can be quickly examined by scanning through the visual-
ized event data streams. We can then connect these patterns back to top-
down research questions and hypotheses. Moreover, we can see not only an
event itself but also the conjunction of two events because the overlapping
of two colors ⁄areas will generate a new color. For example, if two binary
events A and B are labeled as ‘‘red’’ and ‘‘green’’ then we can see four color
categories: red—‘‘A^�B,’’ green—‘‘�A^B,’’ yellow—‘‘A^B,’’ and
white—‘‘�A^�B.’’ In a more general case with more events, a color-based
event visualization scheme is still able to represent all possible logical con-
junctions of those events.

Further, we can exploit this technique to find complex patterns hidden in
continuous gaze data conditioned on temporal events—what trends and pat-
terns can be extracted from continuous gaze data when certain events hap-
pen. Our approach is to overlap color bars representing events on the top of
continuous gaze streams. Figure 3 shows multiple raw gaze streams over-
lapped by several events, allowing us to visually spot potential patterns
across those data streams and to examine how those patterns are affected by
the events.

In particular, as temporal events define important moments over time
(both onsets and offsets), we can pay special attention to those high-
lighted moments to discover potentially interesting temporal patterns. For
instance, at around the 7 sec mark in Figure 3, right before the performer
started speaking, a subset of participants already started switching their
attention to her face. If participants looked at a target location even
before a stimulus was presented there or a motion event happened there,
we would be able to see the allocation of their attention before the onset
of an event to detect potential predictive looking behaviors. As predictive
looking behaviors may happen in different ways across participants (some

Figure 3 Visualizing raw gaze data (generated by participants) with multiple temporal

events (generated by the performer) allows us to compare underlying patterns of continu-

ous gaze data within and across different events.
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earlier and some later), visualizing all of the data allows us to capture
both the overall pattern and potential individual differences. Similarly, we
can visually examine responsive looks and gaze reaction times by zoom-
ing into the moments right after the onset of an event. We can measure
latency to shift gaze to the target and duration of fixation. For instance,
while the performer switched her attention to an object after face looking
(around 2 sec in Figure 3, from the ‘‘green’’ event to the ‘‘red’’ event), par-
ticipants also all followed her gaze toward the target object in joint refer-
ence. Through visualized data, we can see quite different latencies across
participants in this attention switch, indicating that further data analysis
should take individual differences into account. In addition, we can also
examine whether participants maintained sustained attention at a certain
location while an event was on and whether their attention drifted away
when the event ended. For example, during the face-looking moments (in
the ‘‘green’’ event), participants shown in Figure 3 consistently looked
back at the performer’s face and by doing so created more eye contact
moments. For another example, during the first talking event in Figure 3
(around 7 sec), participants switched their attention away from the face
approximately at the same time that the talking event ended.

While predictive looking, responsive looking, and sustained attention are
well studied topics, summary statistics may miss important patterns because
of the complexity of spontaneous eye movements and individual variation.
Visual data mining provides a unique way to quickly examine data to gain
insights about which moments (before, after, and during) should be focused
given a certain event, what data should be included (or excluded) to capture
certain patterns, what appropriate statistical methods should be used to
compute statistics, and what appropriate parameters (e.g., what timing
threshold to capture predictive looking) should be selected. Without such
insights from examining microlevel data, just applying predetermined
approaches with standard and default parameters (e.g., those developed by
eye-tracking companies for general purposes) may not be able to accurately
capture elaborate patterns in real-time gaze data. To further illustrate this
point, we present two data processing techniques to capture two different
aspects of temporal patterns that leverage event-based exploratory data
analysis to move beyond the raw data.

Temporal Profiles

This representation is based on one used in psycholinguistic studies to cap-
ture overall temporal dynamics across a related class of events (Allopenna,
Magnuson, & Tanenhaus, 1998). The basic implementation consists of two
simple steps: (a) taking multiple gaze streams synchronized in time and then
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computing the aggregated value at each time point; and (b) plotting a tem-
poral profile by putting together aggregated values from individual moments
and overlapping event bars on the profile. Continuous data streams can take
two forms. In the case of numerical data stream (e.g., raw x and y coordi-
nates as shown in Figure 1), the aggregated value is the mean of data points
at a given time. In many other cases, we first convert (x,y) into a categorical
value indicating an AOI. To follow the examples in Figures 1 and 2, Figure 4
(left) shows AOI streams from a group of participants wherein two colors
are used to represent looking at two different AOIs (the performer’s face or
an object). Figure 4 (middle) shows the results of temporal profiles by aggre-
gating data across participants. Each data point in a temporal profile repre-
sents an estimated probability that participants as a group gazed at a certain
AOI (a face or an object) at that moment. Temporal profiles provide easy
access to information about the dynamics of attention in a task, and how
these dynamics play out in concert with the input stimuli. For instance, con-
sensus can be seen in the moments when a majority of participants looked at
the face AOI (e.g., 90% in Figure 4 means 9 of 10 participants gazing at that
location). Real-time attention dynamics can be seen in the group transition
from focusing on one AOI (e.g., the face) to another (e.g., the object). In this
example, two AOIs can be viewed as competing for participants’ attention,
and we can see how this competition emerges over time. Finally, the interac-
tion of group attention dynamics with events can be seen by overlapping

Figure 4 From multiple areas of interest (AOI) streams (left), two probabilistic tempo-

ral profiles (middle) are computed, which indicate the probabilities of looking at each

AOI at a particular moment in time. In this way, the overall dynamic trend from multiple

profiles can be examined together. In addition, overlapping events (shaded areas) with

the temporal profiles highlights interesting moments in time, which allows us to see the

patterns within those instances as well as the overall trend before and after events. Next,

two instances from the same ‘‘face-looking’’ event are integrated to generate aggregated

temporal profiles (right) around event ‘‘face looking.’’
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event bars with temporal profiles. For example, before the onset of the
‘‘face-looking’’ event wherein the performer looked up toward observers,
participants looked more toward the object AOI; and right after the onset of
the ‘‘face-looking’’ event, there was an increase in looking at the face AOI,
suggesting that participants looked back to the performer in response to her
action. All this makes temporal profiles from a whole group an informative
intermediate step from raw data to final statistics.

An additional step is to aggregate temporal profiles across multiple
instances of the same event to generate accumulated profiles for that event
type. As shown in Figure 4 (right), gaze data from multiple instances of
the same event are aligned (to maintain timing relative to the event) and
integrated to obtain aggregated probability profiles. The alignment can be
based on either the onsets or the offsets of individual instances of the
event depending on their relative importance to the research question. By
integrating multiple instances while keeping relative temporal information
with regard to a certain event, the accumulated temporal profiles can
reveal statistically more reliable (and stronger) temporal patterns. In the
example shown in Figure 4 (right), we can see a clear trend of attention
from the object to the face and then back to the object around the face-
looking event when the performer initialized a face look and then looked
away.

Event-Driven Response Timing

As temporal profiles provide an overview of the dynamic trend of gaze pat-
terns over time from the whole group, they cannot provide detailed informa-
tion about when participants switched their gaze from one area to the other.
The precise timing information is critical as it reveals just-in-time informa-
tion requested by internal cognitive processes (Hayhoe & Ballard, 2005). In
many cases, it is informative to know how participants respond to a certain
event and whether they adjust their attention during the event (e.g., the
onset and offset of a spoken word, the appearance and disappearance of
visual stimuli, or the starting and ending of an action). For instance, partici-
pants might not attend to the target at the onset of the event, but only after
they perceive the event as a response to such an event. Therefore, we can
measure whether they switch to the target after the event onset by comput-
ing the timing latencies between the event onset and the first fixation on the
target. Figure 5 shows timing latency histograms from two events, showing
participants responded to event B more promptly than to event A. Again
visualizing these results allows us to discover not only whether two timing
latencies are different, but more importantly to closely examine in what ways
they differ. For example, with this visualization, we can easily see that a
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large proportion of participants generated their first fixation on the ‘‘blue’’
AOI as a response to event B within a timing window between 333 ms and
667 ms. In contrast, their responses to event A vary across individual partic-
ipants—more or less evenly distributed up to 3,000 ms.

In summary, temporal profiles and event-driven response timing are two
complementary measures—one focusing on the overall dynamics over time
from a whole group and the other focusing on precise timing between events
and gaze data from individual participants. These bottom-up patterns, when
extracted, can be rendered with meaningful interpretations based on top-
down knowledge. In this way, this interactive event-based exploration with
informed decisions from the combination of top-down knowledge and bot-
tom-up patterns in data will ultimately lead to clean, meaningful and reliable
results.

Figure 5 Computing and visualizing timing histograms. Top: timing latencies (arrows,

etc.) from the onset of an event (indicated by a vertical dot line) to the moment of gazing

at a certain areas of interest. There are two event onsets in this example. Bottom: two

timing latency histograms are computed by gathering all the latencies from individual

participants, and a comparison between the two histograms to two events show the dif-

ferences of how promptly participants reacted to these two events.
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Grouping and Comparing Gaze Data

In most studies, results take the form of a comparison between gaze data
from different conditions, or between an experimental condition and a base-
line condition. This requires the whole data set to be divided into
groups ⁄ subsets, and then, the behaviors from different groups to be
compared. Shared patterns between groups can be viewed as consistent and
reliable gaze behaviors as different patterns show the impact of factors that
are used to define grouping. Given various ways to extract different patterns
from raw data as intermediate results (e.g., temporal profiles or timing histo-
gram), a necessary next step toward generating final statistics in this frame-
work of exploratory data analysis is to form different groups and compare
patterns between groups.

While grouping data based on different experimental conditions is
straightforward, data can also be grouped in other ways: either using addi-
tional information independent of gaze data or gaze data themselves. In the
first case, most studies collect additional measures along with gaze data. For
instance, the MacArthur-Bates Communicative Developmental Inventory
(CDI) may be used to measure the vocabulary sizes of participants. In some
studies, EEG or psychophysiological measures are also taken together with
gaze data. These measures can be first analyzed separately and then subse-
quently used to group gaze data for further data analysis. Alternatively,
those measures may define some critical moments in time which can be used
to divide continuous gaze data into several segments and then group and
compare those segments. Moreover, one can group data based on existing
patterns extracted from data. For instance, participants can be grouped
based on their gaze behaviors at a certain moment to predict gaze behavior
at other moments (see good examples from Amso & Johnson, 2006; John-
son, Davidow, Hall-Haro, & Frank, 2008; Johnson, Slemmer, & Amso,
2004). In particular, some experiments are designed with two stages: habitu-
ation ⁄ training and testing. Therefore, testing results can be used to group
gaze data during training to draw inferences about learning processes.

Here, we use an example from Yu and Smith’s (2011) cross-situational
word learning study in which young infants were exposed a sequence of
training trials followed by a testing phase. In studies such as this, one can
group individual participants in different ways. For example, gaze data at
test can be first analyzed based on preferential looking (Golinkoff et al.,
1987) by counting the proportion of accumulated time looking at the correct
referent when hearing a corresponding word. This learning result (based on
gaze data at test) can then be used to group participants into two group-
s—strong and weak learners. Alternatively, one can group participants
based on gaze behaviors in early training trials to see whether these
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behaviors are predictive for where they looked in later training or at test.
Further, one can group participants based on other measures such as their
CDI scores to examine whether gaze behaviors generated in this laboratory
learning task relate to vocabulary development in the real world. For each
grouping, different gaze patterns (e.g., number of fixations, duration of fixa-
tions, latencies) can be extracted within a group and then compared across
groups. Now that we face with another challenge: given various ways to
group data and given various patterns that can be extracted within individ-
ual groups, what kinds of grouping on what patterns are both meaningful
and interesting? Similar to other data analysis challenges discussed in the
article, the goal here is to use top-down knowledge to quickly examine the
results from a variety of possible combinations of groupings and extracted
patterns within groups, and identify those that may lead to reliable results.

Figure 6 shows two extracted patterns from one grouping—categorizing
participants into strong and weak learners based on testing results. More
specifically, Figure 6 (top) shows the average number of eye fixations over
individual training trials. Both infants who show strong learning at test (the
strong learner group) and those who show weak learning at test (the weak
learner group) have similar eye movement patterns at the beginning, but
roughly around 3–5 trials into the experiment, their looking patterns begin
to diverge. Weak learners generated more and shorter fixations while strong
learners maintained more stable attention switches through the whole train-
ing. At the end of training, both strong and weak learners had similar over-
all attention switches again. Figure 6 (bottom) shows the average lengths of
the longest fixations over training trials. A longer fixation may indicate more
stable attention and therefore better learning. Infants who showed stronger
learning at test consistently generated longer fixations trial by trial while the
infants who showed weaker learning at test always produced shorter fixa-
tions especially at the end of training. The overall results from Figure 6 sug-
gest that strong and weak learners show quite different gaze patterns from
the beginning to the end of learning. On the early learning trials, weak
learners tend to generate more and shorter fixations. However, the most sig-
nificant differences are in the middle of learning; weak learners generate
more attention switches than strong learners. Moreover, given the approxi-
mate same number of attention switches (given that there are no major dif-
ferences in the longest looking duration), the other fixations generated by
strong learners are more stable than those in weak learners. Finally, the end
of training is clearly characterized by longer fixations by the stronger learn-
ers. As more details on both extracted patterns and interpretations of those
patterns relating to how underlying attentional processes may lead to better
or worse word learning can be found in Yu and Smith (2011), the main
purpose here is to illustrate visualizing these patterns from the two learner
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groups facilitate exploratory data analysis to allow us easily examine, iden-
tify, compare, and interpret potentially interesting patterns.

GENERAL DISCUSSION

Data-driven knowledge discovery is a promising new trend in scientific
research, already producing new findings and theories across a number of
fields. The central problem in this endeavor is the discovery of novel patterns
from large data sets. Even when we have theoretically motivated predictions
at the macrolevel, we may not be able to perfectly predict fine-grained
gaze patterns at the microlevel embedded in high density eye gaze data. The

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

# 
of

 e
ye

 fi
xa

tio
ns

strong learners weak learners

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

ey
e 

fix
at

io
n 

du
ra

ti
on

 
(s

ec
on

ds
)

strong learners weak learners

Figure 6 Participants are grouped as strong and weak learners. Three metrics are

extracted from gaze data in individual learning trials: (top) the number of fixations in

each learning trial; and (bottom) the average of the longest fixation durations within

learning trials. Shaded areas highlight those moments that are statistically significant

between the two learner groups.
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solution lies in developing a systematic way to explore complex data and dis-
cover interesting and unexpected patterns that we do not know in advance.
Visualizing raw data and intermediate results is a powerful way to facilitate
this data exploration process which allows researchers to interactively
explore potential interesting patterns visually displayed.

Visual data mining approaches can be viewed as an integration of infor-
mation visualization techniques with human domain expertise. The goal is
not to develop a computer program or model that can automatically extract
such patterns, but rather to leverage researchers’ visual pattern recognition
and domain knowledge. Human-in-the-loop data analysis involves active
and iterative examination and exploration of visually displayed patterns to
select useful information and guide further knowledge discovery. This prac-
tice of visual examination and visual pattern matching has been used in vari-
ous domains. For example, when presented with two fingerprint images and
asked to perform a matching task, a novice without any fingerprint exami-
nation experience is unable to perceive much information from two seem-
ingly similar fingerprint images. A fingerprint expert viewing the same two
fingerprints, on the other hand, can confidently identify key visual features
from those two images and compare and match those features to reach a
conclusion (Busey & Parada, 2010). Similar to fingerprint experts, research-
ers studying human development and cognition possess domain knowledge
from their training. When presented with visualized gaze data, our low-level
system can easily identify (expected or unexpected) patterns, and our
domain expertise can render those patterns with scientific interpretations.
Moreover, through interactive visualization, we can further look for specific
patterns to iteratively and systematically decipher the information revealed
by complex gaze data.

Toward this goal, this article does not intend to offer a comprehensive
review of all of the visualization methods available, but rather serves as an
introduction of visual data mining of gaze data. There are two important
take-home messages. First, analysis of complex data, such as eye move-
ments, involves multiple processing steps between raw data and final statis-
tics. Because different decisions at intermediate steps can result in different
conclusions, and the information required to make sensible decisions is
rarely fully available a priori, one effective way to ensure correctness of data
processing is to look back to raw data and compare intermediate results
with the raw data from which those results are derived. Second, to produce
new findings from complex data, we need to conduct interactive data
analyses by integrating top-down domain knowledge and bottom-up pattern
discovery. While many machine learning and computational modeling tech-
niques are available for analyzing behavioral data, they cannot simply be
used ‘‘off the shelf’’ to automatically find new patterns that we do not yet
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know. Compared with ‘‘blind’’ data mining, what we suggest in this article is
that researchers with top-down theoretical knowledge need to be in the loop
of data mining and data analysis. Exploratory data analysis requires theo-
retical guidance to be practically feasible in a sea of complex data. In fact,
we argue that the most intellectually challenging part is for researchers to
gain insights from data by linking domain knowledge with extracted pat-
terns. For this purpose of intelligent data analysis, data visualization and
examination provide an ideal platform to facilitate this process.

Based on the two principles summarized earlier and inspired by the visual
information mantra ‘‘overview first, zoom and filter, then details-on-
demand’’ (Shneiderman, 1996, p. 337), this article describes an interactive
data mining method to analyze temporal behavioral data consisting of three
components as shown in Figure 7:

• Visualizing raw data allows us to gain an overview of the entire data
set to compare raw data across participants and identify both consis-
tent patterns across participants and unique patterns at certain
moments. This step serves two important roles: it gives us insights on
what aspects of gaze data should be further explored, and what
computational methods would be appropriate to capture the patterns
observed.

• Event-based temporal pattern discovery allows us to zoom in and
systematically and closely examine temporal patterns at certain
moments.

• Grouping and comparing patterns is the final step to generate statis-
tically reliable patterns and compare these patterns between different
subgroups and experimental conditions.

In each component, we introduced a set of tools and guidelines with
examples on how to effectively explore new patterns that may lead to new

visualizing 
raw data

event-based 
exploration 

grouping and 
comparing patterns

• group behavior
• individual differences
• temporal acuity
• spatial acuity

• top-down and 
bottom-up events
• temporal profiles
• timing histogram

• top-down knowledge 
• additional measures
• gaze data

Figure 7 Interactive data mining of eye movement consists of three components ⁄ steps:
visualizing and overviewing raw data; closely examining moments of interest on some

portion of data selected based on events; and finally grouping and comparing patterns to

compute statistics.
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discoveries. Critically, this process must have two critical characteristics.
First, it needs to be highly interactive. For example, after we visually exam-
ine raw data, we may go to the next stage of event-based exploration to
study the moments of interest captured by a certain event variable. At that
stage, we may need to go back to an overview stage to verify the patterns we
spot in event-based exploration and interpret these patterns in the context of
global data. Similarly, when we group and compare patterns at the final
step, statistical results derived may not best capture certain properties of the
gaze data. Hence, we need to go back to raw data or event-based visualiza-
tion to come up with better ways in calculating final statistics.

Second, each component (and a set of guidelines and techniques
described in each component) can be used individually as a part of data
analysis. For example, even if one has predetermined which statistics are
appropriate beforehand, it is still beneficial to visualize and examine raw
data and connect that with calculated results to better understand those
results. Similarly, researchers may decide to start with derived data, such as
AOI data, but not raw gaze data (x and y coordinates on the tracking
plane). In this case, event-based exploration can be applied directly to
derived data.

Finally, we note that general principles and ideas advocated in this article
can be carried out across many forms of implementation, from MS Excel, to
MATLAB and R, to specialized visualization systems. Most visualization
examples in this article can be generated relatively easily using existing soft-
ware. To follow the principles and spirit of human-in-the-loop data explora-
tion, one can simply use MS Excel to generate both visualized results shown
in Figures 1, 2, and 3, and temporal profiles and timing histograms shown in
Figures 4 and 5. In addition, there are more and more (advanced) resources
available for researchers to use. The examples in this article were derived
using a visual data mining system that we have developed and used for sev-
eral years (Yu, Zhong, Smith, Park, & Huang, 2009). This system is
designed to analyze temporal sequences such as gaze data and will be made
available to the research community. In addition, there are many other
open-source projects that are targeted at building research tools for scien-
tists (e.g., Cyberinfrastures developed by Börner, 2011). These techniques
provide rich resources for exploratory data analysis and visual data mining
for researchers. In summary, with more and more gaze data collected in
various laboratories, and with more and more information visualization and
data mining techniques available for researchers, we suggest that explor-
atory data analysis and visual data mining of gaze data are a promising and
feasible direction to lead to fruitful results and advance our knowledge of
cognition and development.

VISUALDATAMININGOFGAZEDATA 57



ACKNOWLEDGMENTS

We would like to acknowledge discussions with Ty Boyer, Bennett Berten-
thal, and Linda Smith. This research was supported by National Institutes
of Health R01 HD056029 and National Science Foundation Grant 0924248.

REFERENCES

Adar, E. (2006). GUESS: A language and interface for graph exploration. Proceedings of ACM

CHI 2006 Conference on Human Factors in Computing Systems, 791–800.

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of

spoken word recognition using eye movements: Evidence for continuous mapping models.

Journal of Memory and Language, 38, 419–439.

Amso, D., & Johnson, S. P. (2006). Learning by selection: Visual search and object perception

in young infants. Developmental Psychology, 42(6), 1236–1245.

Arias-Trejo, N., & Plunkett, K. (2010). The effects of perceptual similarity and category mem-

bership on early word-referent identification. Journal of Experimental Child Psychology, 105,

63–80.

Ashmead, D. H., & Davis, D. L. (1996). Measuring habituation in infants: An approach using

regression analysis. Child Development, 67, 2677–2690.

Aslin, R. N. (2007). What’s in a look? Developmental Science, 10, 48–53.

Aslin, R. N. (2009). How infants view natural scenes gathered from a head-mounted camera.

Optometry and Vision Science Official Publication of the American Academy of Optometry,

86(6), 561–565.

Baillargeon, R., & DeVos, J. (1991). Object permanence in young infants: Further evidence.

Child Development, 62, 1227–1246.

Baillargeon, R., Spelke, E. S., & Wasserman, S. (1985). Object permanence in five-month-old

infants. Cognition, 20, 191–208.

Ballard, D., Hayhoe, M., Pook, P., & Rao, R. (1997). Deictic codes for the embodiment of cog-

nition. Behavioral and Brain Sciences, 20, 723–767.

Bell, G., Hey, T., & Szalay, A. (2009). Beyond the data deluge. Science, 323, 1297–1298.

Börner, K. (2011). Plug-and-play macroscopes. Communications of the ACM, 54(3), 60–69.

Busey, T. A., & Parada, F. J. (2010). The nature of expertise in fingerprint examiners. Psycho-

nomic Bulletin & Review, 17(2), 155–160.

Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization:

Using vision to think, San Francisco, CA: Morgan Kaufman.

Carey, S. (2009). The origin of concepts. New York: Oxford University Press.

Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychol-

ogy, 52, 337–367.

D’Entremont, B. D., Hains, S. M. J., & Muir, D. M. (1997). A demonstration of gaze following

in 3- to 6-month-olds. Infant Behavior and Development, 20, 569–572.

Fantz, R. L. (1964). Visual experience in infants: Decreased attention to familiar patterns rela-

tive to novel ones. Science, 146, 668–670.

Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). New-

born’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the

National Academy of Sciences, 102, 17245–17250.

58 YU, YUROVSKY, & XU



Feigenson, L., & Halberda, J. (2008). Conceptual knowledge increases infants’ memory capac-

ity. Proceedings of the National Academy of Sciences, 105, 9926–9930.

Fernald, A., & Hurtado, N. (2006). Names in frames: Infants interpret words in sentence frames

faster than in isolation. Developmental Science, 9, F33–F40.

Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in understanding: Speech

processing efficiency and vocabulary growth across the 2nd year. Developmental Psychology,

42, 98–116.

Franchak, J. M., Kretch, K. S., Soska, K. C., Babcock, J. S., & Adolph, K. E. (2010). Head-

mounted eye-tracking of infants natural interactions: A new method. Proceedings of the 2010

Symposium on Eye-Tracking Research & Applications, 21–27.

Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants attention to faces during

the first year. Cognition, 110(2), 160–170.

Gilmore, R. O., & Rettke, H. R. (2003). Four-month-olds’ discrimination of optic flow patterns

depicting different directions of observer motion. Infancy, 4, 177–200.

Golinkoff, R., Hirsh-Pasek, K., Cauley, K., & Gordon, L. (1987). The eyes have it: Lexical and

syntactic comprehension in a new paradigm. Journal of Child Language, 14, 23–45.

Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning

to newly segmented words? Statistical segmentation and word learning. Psychological Science,

18, 254–260.

Griffin, Z. M., & Bock, K. (2000). What the eyes say about speaking. Psychological Science, 11,

274–279.

Hayhoe, M. (2004). Advances in relating eye movements to cognition. Infancy, 6(2), 267–274.

Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sci-

ences, 9(4), 188–194.

Henderson, J. M. (2003). Human gaze control in real-world scene perception. Trends in Cogni-

tive Sciences, 7(11), 498–504.

Hollich, G. J., Hirsh-Pasek, K., & Golinkoff, R. (2000). Breaking the language barrier: An

emergentist coalition model for the origins of word learning. Monographs of the Society for

Research in Child Development, 65(3), i–vi, 1–123.

Houston-Price, C., & Nakai, S. (2004). Distinguishing novelty and familiarity effects in infant

preference procedures. Infant and Child Development, 13, 341–348.

Hunter, M. A., & Ames, E. W. (1988). A multifactor model of infant preferences for novel and

familiar stimuli. In L. P. Lipsitt (Ed.), Advances in child development and behavior (pp. 69–95).

New York: Academic Press.

Hurtado, N., Marchman, V. A., & Fernald, A. (2008). Does input influence uptake? Links

between maternal talk, processing speed and vocabulary size in Spanish-learning children.

Developmental Science, 11(6), F31–F39.

Jackson, I., & Sirois, S. (2009). Infant cognition: Going full factorial with pupil dilation. Devel-

opmental Science, 12, 670–679.

Johnson, S. P., Davidow, J., Hall-Haro, C., & Frank, M. C. (2008). Development of perceptual

completion originates in information acquisition. Developmental Psychology, 44(5), 1214–

1224.

Johnson, S. P., Slemmer, J. A., & Amso, D. (2004). Where infants look determines how they

see: Eye movements and object perception performance in 3-month-olds. Infancy, 6(2), 185–

201.

Jovancevic-Misic, J., & Hayhoe, M. (2009). Adaptive gaze control in natural environments. The

Journal of Neuroscience, 29, 6234–6238.

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy:

Evidence for a domain general learning mechanism. Cognition, 83(2), B35–B42.

VISUALDATAMININGOFGAZEDATA 59
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