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A recent study [1] showed that different attention cues (social and non-social) produce 

qualitatively different learning effects. The mechanisms underlying such differences, 

however, were unclear. Here, we present a novel computational model of audio-visual 

learning combining two competing processes: habituation and association. The model’s 

parameters were trained to best reproduce each infant’s individual looking behavior from 

trial-to-trial in training and testing. We then isolated each infant’s learning function to 

explain the variance found in preferential looking tests. The model allowed us to 

rigorously examine the relationship between the infants’ looking behavior and their 

learning mechanisms. By condition, the model revealed that 8-month-olds learned faster 

from the social (i.e. face) than the non-social cue (i.e., flashing squares), as evidenced by 

the parameters of their learning functions. In general, the 4-month-olds learned more 

slowly than the 8-month-olds. The parameters for attention to the cue revealed that 

infants at both ages who weighted the social cue highly learned quickly. With non-social 

cues, 8-month-olds were impaired in learning, as the cue competed for attention with the 

target visual event Using explicit models to link looking and learning, we can draw firm 

conclusions about infants’ cognitive development from eye-movement behavior. 
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1.   Introduction 

1.1.   Multimodal Relationships 

The infant’s world is filled with sights and sounds that belong together (e.g., toys 

falling, people talking, cars driving). Linking these concurrent sights and sounds 

helps infants organize their cluttered multimodal world [2][3]. Moreover, 

tracking multimodal relationships (e.g., synced in tempo, motion, and location) 

helps infants learn about the events: One fundamental advantage of binding 

sights and sounds is that they allow for the prediction of future events. After 

learning information in two modalities (e.g., seeing and hearing a favorite toy 

dancing), it is useful for infants to remember the location of the toy when they 

only hear the toy’s sound across the room. Tracking audio-visual information in 

this way can help infants organize events in spatial locations. Six-month-olds 

associate sounds to objects when they are perceived simultaneously in a 

particular location [4]. When presented with only the sound, infants look to the 

location where the object had previously appeared. This ability, referred to as 

spatial indexing, has been documented in infants as young as 3 months of age, 

with increasing reliability and flexibility over the first year of life [4][5].  

1.2.   Social and Non-social cues 

The aforementioned research has established that infants distinguish and track 

multimodal events when presented in isolation (one multimodal event at a time). 

In noisy natural environments, unlike the laboratory setting, infants are often 

presented with multiple streams of cross-modal information. How do infants 

know which audio-visual event to bind? One way of knowing could be relying 

on attention cues. Since attending to appropriate events is a fundamental part of 

learning, infants can rely on attention cues to gain an advantage in learning 

relevant information. Cues can capture, direct, and sustain attention, though the 

quantitative and qualitative nature of this shifted attention can vary with each 

type of cue.  

Both social and non-social cues shift infants’ attention. Infants follow faces 

that look in a particular direction [6-8] or when flashing, dynamic shapes appear 

in a particular location [9-10]. Infants reach adult-levels of attention shifting with 

non-social cues in the periphery by 4 months of age [10]. With social cues, 

however, infants begin following eye gaze in simple naturalistic situations by 3 

to 4 months (e.g., joint attention [6]) and show dramatically increased reliability 

by 6 to 8 months of age [8][11]. 
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1.3.   Learning from Attention Cues 

How do different attention cues affect learning? In other words, how useful are 

these cues in helping infants’ cognitive development? [1] found that depth of 

learning audio-visual events from social and non-social attention cues was 

dependent on the age of the infant and the nature of the attention cue. This study 

measured gaze behavior of 4- and 8-month-old infants when they were presented 

with dynamic audio-visual events (i.e., cats moving to a bloop sound and dogs 

moving to a boing sound) in white frames in the corners of a black background. 

An object’s appearance in a spatial location consistently predicted a location-

specific sound. On every familiarization trial, infants were shown identical 

audio-visual events in two diagonally opposite corners of the screen (i.e., two 

valid binding locations). To test the effects of attentional cueing on audio-visual 

learning, either a social (i.e., a real face) or non-social (i.e., colorful flashes) cue 

shifted infants’ attention to one of the two identical events on every trial. For the 

social cue, a face appeared, spoke to the infant, and turned to one of the lower 

corners containing an object. For the non-social cue, a red flashing square 

wrapped around the target frame appeared and disappeared at a regular interval 

(i.e., flashed continuously) throughout the familiarization trial. During the test 

trials, only the four blank frames were displayed on the screen while one of the 

sounds played (Figure 1).  

Within one familiarization trial, two locations could have been associated 

with the sound, and across all familiarization trials, two locations were cued (one 

for each object type). The design of this paradigm allowed for the discrimination 

of two types of learning: 1) learning from attention cues, and 2) audio-visual 

learning. They measured where infants predicted the objects would appear. 

There were four possible learning outcomes: 1) Infants could predict that objects 

would appear in only cued locations (lower corners) regardless of multimodal 

information, 2) infants could predict that objects would appear in valid binding 

locations regardless of where they were cued, 3) infants could use both 

information from the attention cue and multimodal presentation by predicting 

objects would appear in cued correct object locations, or 4) infants could use 

neither set of information and look in incorrect frames or equally to all frames. 
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Figure 1:  Familiarization and test trials from the Face and Square cueing conditions from [1]. The 

stimuli were in full color; the frames were white and presented on a black background. The shaded 

areas represent red flashing squares. 

 

Results showed that infants displayed qualitatively different looking patterns 

at test, despite fixating for equal time to the correct locations across different 

training conditions. [1] showed that while both cues led infants to attend 

preferentially to cued locations during familiarization and test across all age 

groups, cross-modal contingencies were learned only by older infants exposed to 

social cues. Only 8-month-olds cued by the face during familiarization looked 

longer to correct cued object locations during test, whereas the 4-month-olds in 

the same condition anticipated events in both correct and incorrect cued 

locations, perhaps ignoring the multimodal information. The 8-month-olds cued 

with flashing squares (non-social cue) also looked longer to cued locations than 

to non-cued locations regardless of object–sound mappings. These findings 

suggest that specific multimodal learning is dependent on the nature of what 

orients attention as well as the age of the infant using the attention cue. 

2.   Microanalysis: A Model Selection Approach 

2.1.   Motivation 

Using a preferential looking time method, [1] demonstrated the impact of 

attention cues on learning during infancy. This paradigm used only a behavioral 

measure (i.e., looking time) and collapsed the data within a condition for each 

age group. As a result, three issues remain unresolved. First, the distribution of 

learning rates within each condition is unknown. For example, did every infant 
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learn in the same way, or are there clusters of different learner types within each 

condition? Second, whether the learning differences between conditions were 

quantitative or qualitative is unknown. If they were due to a quantitative 

measure, a factor such as training length could eventually match the learning 

effects across conditions. This would not be the case for a qualitative difference. 

Third, we do not know the exact mechanisms underlying the learning behavior. 

What factors drove the anticipatory looking? To address these three issues, we 

analyzed the temporal dynamics of eye movement data at a finer level. 

In order to make claims about infants’ learning mechanisms, inferences must 

be made from the available data: looking behavior. This requires a linking 

hypothesis to connect looking and learning. In the preferential looking paradigm, 

[1] implicitly committed to one such hypothesis: as infants learn about the 

associations between sounds and locations, they will prefer to fixate those 

locations when they hear the matching sounds. The same hypothesis used 

frequently in early word learning research [12]. Other infancy studies, focusing 

on other topics (e.g., visual perception [13]), however, sometimes adopt the 

opposite hypothesis: as infants learn more about an event, they preferentially 

fixate new locations to search for novel events (i.e., looking to the original event 

wanes, habituation). Moreover, these mechanisms that could drive infants’ real-

time looking behavior are complex. For example, infants’ habituation profiles 

may be non-monotonic, with a preference first for familiarity and a later 

preference for novelty emerging as learning progresses [14][15]. This suggests 

two troubling implications for analysis of eye movements – one at the individual 

infant level, and one at the group level. First, if infants first show a familiarity 

preference and then a novelty preference over the course of learning, they may 

progress through a period of no preference in between. An infant who shows no 

preference, then, may in fact have learned an association. Second, if individual 

infants learn at different rates – and evidence suggests that they do [16] – then 

group analyses may average together data from infants who have a novelty 

preference with those who have a familiarity preference. A group null result thus 

becomes difficult to interpret [17][18]. We account for these factors in a model 

selection framework, using infant eye movements in the course of learning to 

demonstrate and interpret differential learning from attention cues. 

2.2.   Model Selection for Eye Movements 

The main issue with using a linking hypothesis is initially choosing the 

appropriate one. As suggested by [19], this study relied on the data to specify the 

linking hypothesis. A model selection approach to this problem is a four-step 
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procedure. First, we generated a formal description of the learning task. This 

included the input available to the infant on each trial of the experiment and the 

output categories (i.e., regions of interest) as they were measured in the original 

data analysis. Second, we defined a null model for the task. This null model was 

the function expected to generate eye movements for infants who did not learn 

about the input. Third, we defined a set of possible linking functions. The next 

section presents one principled way of generating a set of such functions (for an 

alternative, see [20]). Finally, we defined a method of selection, a way of 

determining which linking function was most likely to have generated each 

infant’s recorded eye movements. For the selection, we used the Akaike 

Information Criterion (AIC) [21], a heuristic that trades off increasing the fit to 

data with increasing the number of parameters in the model. Other heuristics are 

possible, (e.g., BIC). Akaike’s criterion, however, has been shown to have lower 

error when the true model is not among the set of candidates [22] – a situation 

very likely given the simplifying assumptions in our analysis. This issue will be 

further discussed in the context of specific models below. 

The following sections review the four steps of the model selection 

framework for the cued attention task presented above, and demonstrate its 

utility for drawing inferences about infant learning at multiple levels. 

3.   Modeling the Cued Learning Task 

3.1.   Formalizing the Task 

On each trial of the experiment, infants saw a black screen with four white-

framed boxes, one in each corner of the screen. These four boxes, or locations 

(Loc1, Loc2, Loc3, Loc4), were defined as our regions of interest. On each trial, 

the model was asked to predict the duration of looking time to each of these four 

locations. For mathematical convenience, we used the log odds of looking to 

each location [23]. Using the odds ratio form of the exponentiated Luce choice 

axiom [24], we proposed that odds of looking to each location were the odds 

ratio of their theoretical activation functions (defined below). 

 

(1) 

 

The four boxes, however, were unlikely to be equally interesting because 

objects appeared in two of the four boxes. We will refer to any box which 

contained an object as salient. Formally, 

 

 (2) 
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In addition, one of the locations was cued – either by a centrally-located 

face (Face condition) or by a flashing square around the box (Square condition).  

 

 (3) 

 

Finally, a sound was heard on each training trial. Since the sound was not a 

component of the visual display, we proposed that it did not have a direct effect 

on fixation patterns, but guided looking indirectly through sound-location 

associations. We return to the role of the sound on fixations in Step 3. 

In contrast to the training trials, test trials contained neither objects nor 

visual cues, only white boxes and the sound. Because the test trials did not differ 

from the training trials in any other way and because the boxes were on screen in 

the presence of sounds for the same length of time as in training trials, we 

described both types of trials with the same formal vocabulary. The only 

difference was that the salient and cued functions always had the value ‘0’ for all 

locations on the test trials. 

3.2.   A Null Model 

After formalizing the structure of each trial, we defined a null model for the task. 

This null model defined the activation function (above) for infants for whom 

looking was not guided by learning. In the absence of learning, we suggest that 

looking was guided by two potential sources: 1) The on-screen cue’s direction of 

attentional shift (Cued), and 2) the presence or absence of an object in each box 

(Salient). The null model was thus a function of these two factors: 

 

 (4) 

 

The constant c weighted the importance of the cue, and similarly, s weighted 

the importance of the salient objects. 

3.3.   A Learning Model 

After defining the null model, we specified the linking function, which defined 

the activation function for infants whose gaze patterns were driven by their 

learning. First, we proposed that infants may have remembered which screen 

locations they frequently fixated. They may then have preferred not to fixate 

those locations on future trials (i.e., habituating to them). Efforts to characterize 

infant habituation functions [15][19][20] have modeled them with polynomial 
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functions or bounded exponentials. Because habituation functions are non-

monotonic [14], for simplicity we used polynomials of up to degree 2 (arbitrary 

orders are possible in principle). Thus, we defined habituation to a screen 

location as a polynomial function of cumulative looking time to that location. 

Thus, the function could be increasing, decreasing, or both, and could be either 

linear or faster-than-linear. Formally, if Nh is the maximum order of the infant’s 

habituation function, 

 

 

 (5) 

 

 

where  is the parameter of the n
th

 term of the infant’s habituation function. 

Parameters were selected by regression to best account for the infant’s looking 

data. Then, model selection (below) was used to determine which order of 

habituation was appropriate for each individual infant. 

Second, we proposed that infants may have learned the relationship between 

the sounds and the on-screen locations of the objects (in two locations) that were 

presented in synchrony. Binding the audio and visual events was of primary 

interest to [1]. To determine whether infants learned this relationship, we 

formalized how this knowledge could drive looking. As with the habituation 

function above, we proposed that looking on a current trial was driven by a 

polynomial function of cumulative looking. However, in this case, we used 

cumulative looking to a location in the presence of the sound to indicate this type 

of learning. That is, the polynomial is a function of the subset of looking during 

which the association sound was heard. Equation 6 represents this dependency as 

a conditional probability notation. In addition, we again used up to second 

degree polynomials (though any order is possible in principle). Thus, if Na is the 

maximum order of association for a given infant,  

 

  

(6) 

 

 

In sum, the goal of the above models is to produce an explicit account of 

where infants should look on each trial given one of a set of possible models. 

Each of the models must predict the amount of time an infant will spend looking 

at each of the four possible screen locations on each trial. This amount is 

represented as a fraction of total looking time using a log odds representation. 
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These fractions are then stored to represent cumulative looking time, which is 

the variable on which learning functions operate. 

The models of learning used in this analysis are functionally similar to 

neurally inspired learning models [15], but are not intended to link directly to 

any brain structures. We take this approach primarily for efficiency and 

simplicity. The functions which are considered here are easy to parameterize, 

compare, and analyze, which are the questions of critical importance to this 

analysis. Tying these models to underlying neural mechanisms would be an 

interesting question for future research. 

3.4.   Selecting the Best Model 

Up to this point, we have defined a set of possible learning models, as well as a 

null model for the task. In order to determine whether (and how) each infant 

learned, we only needed to determine which function was most likely to have 

generated the observed looking patterns. Therefore, we picked a criterion 

(Akaike Information Criterion [21]) to judge the correspondence between the 

model and the observed data. AIC trades off minimizing the divergence between 

predictions and observations (in the form of sum of squared errors) with 

increasing the complexity of the model. Intuitively, as the model becomes more 

complex (higher orders of association and habituation), it will produce an 

increasingly better fit to the data. As a result, however, there will be diminishing 

returns: eventually, the corresponding increase in goodness of fit for adding a 

new parameter will become small relative to the increase in model complexity. 

As per Occam’s razor, we wanted the simplest model with a ‘good enough’ fit. 

3.5.   Model Training 

After formalizing the learning task, defining a null model and a set of candidate 

learning models, and describing how to select among them, the next step was to 

fit the functions to each infant’s looking behavior to find the most suitable one. 

Fitting functions is an optimization problem – a process of parameterizing the 

functions to fit the data.  

The form of the OddsLook function supports easy parameter fitting via 

linear regression, for which a closed form solution is known. Thus, for each 

infant, parameters were selected for each function to best predict the data. Then, 

the most parsimonious of these models was selected with AIC. Because there 

was no principled reason to separate training trials from test trials, and because 

including training trials greatly increased the amount of data available, models 
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were fit to the entire course of looking behavior during the experimental session 

for each infant. 

4.   Results and Discussion 

We present the results in two steps. First, we walk through an in-depth analysis 

of the 8-month olds in the Face condition to show how the outcome of the model 

selection analysis can be interpreted. Second, we present a cross-condition 

comparison using the model selection framework. This analysis highlighted the 

differences between the experimental conditions, and allowed us to ask how 

learning differed across cue conditions and age groups. 

4.1.   Data Analysis of 8 months Face Condition 

Data from 28 8-month-old infants were analyzed using the model selection 

framework described above. Infants were exposed to four blocks, each 

consisting of six training trials followed by one test trial. Over 28 trials, infants 

fixated each of the four locations for some length of time. Each model was 

required to fit this looking data. The large number of trials (training and test) per 

infant in these experimental sessions provided significantly more data than is 

typically used to assess learning via preferential looking analysis (only test 

trials). 

To justify and draw conclusions from the modeling analysis, we first 

established that the models fit a significant proportion of each infant’s looking 

data. The best model for each infant matched closely to that infant’s actual data 

(mean Pearson’s r = .72, p < .001, see Figure 2). Having confirmed that the 

chosen linking functions characterized each infant’s looking data; we could draw 

further inferences from these functions. 
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Figure 2: Looking data (black circles) and model fits (gray circles) for one 8-month-old in the Face 

condition. The four graphs represent the four locations on each screen, and each data point 

represents log odds of looking on one trial. Marked trials on the x-axis indicate test trials. 

 

 

Because each infant was modeled individually, we can determine whether or 

not each infant learned. As the main factor of interest is the nature of 

associations formed by the infants, we focused on parameters of infants’ 

association functions (Na). Of the 28 infants, 22 were found to have learned a 

relationship between sounds and screen locations (Na > 0). Of these, the great 

majority learned at a faster-than-linear rate (Na > 1, 17/22). Thus, multi-modal 

learning in this condition was both frequent and rapid. Moreover, if the model 

was correct, we expected to find a relationship between infants’ looking 

preferences at test and the order of their association functions. Indeed, the 

strength of an infant’s preference for the correct location at test correlated 

significantly with that infant’s order of association (r = .41, p < .05). Figure 3 

displays both the distribution of habituation and association orders, and the 

correlation between association and looking preference at test. 
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Figure 3: A scatter plot of infant habituation and association orders. Association orders greater than 

zero imply that an infant learned the relationship between sounds and locations. When infants are 

ordered by the strength of their preference at test (lightest = strongest preference), this correlates 

with their order of association. 

4.2.   Comparison Across Conditions 

The real power of the model selection framework is the leverage it provides for 

comparing across multiple conditions. We thus applied the same four-step 

procedure of the framework to each of the two other conditions – 4 months Face 

(i.e., face cue) and 8 months Square (i.e., flashing square cue). As in the previous 

condition, the most parsimonious model for each infant accounted for a 

significant proportion of the looking behavior (r4 = .68, p < .001, r8 = .69, p < 

.001). Therefore, we were licensed to make further inferences on the basis of the 

linking functions. 

Analysis of the orders of association for the 8 months Face condition 

demonstrated that the vast majority of infants learned the multi-modal 

relationship, and that the majority of infants who learned did so at faster-than-

linear rates. We compared this distribution of association orders to those found 

in the other two conditions. As can be seen in Figure 4, the distributions are 

different across conditions. Eight-month old infants cued with a flashing square 

instead of a face were much less likely to learn cross-modal contingencies  

(Na > 0). In addition, infants who did learn the contingencies did so more slowly 

than those in the Face condition. The ratio of quadratic learners dropped from 

3:1 (Face condition) to 2:1 (Flashing square condition). Four-month-olds in the 
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Face condition exhibited different behaviors from the other two conditions. The 

number of learners was in between those of the two 8 months conditions. More 

interesting was the distribution of linear and quadratic learners. In contrast to the 

8-month-olds, the majority of whom were best described by quadratic functions, 

4-month-olds were much more likely to be linear learners. Thus, the rate of 

learning from the face cue seemed to increase with age. Moreover, it seems that 

the face cue was easier to learn from than the flashing square cue. 

 

Figure 4: Distribution of association order across conditions. Eight-month-olds learned more rapidly 

from the face than from the square, and 4-month-olds showed a different ratio of linear (Na=1) to 

quadratic (Na=2) learners than 8-month-olds. 

 

For completeness, we performed a similar analysis for infants’ habituation 

functions. Although habituation is not the question of primary interest in this 

analysis, it is worth making explicit we have included it as a mechanism which 

may have driven looking behavior. In fact, infants across all three conditions 

showed very similar habituation order distributions (Figure 5). Slightly less than 

half of the infants in each condition produced eye movements which implicated a 

habituation function. The rate of habituation (at least in terms of linear vs. 

quadratic) did not appear to differ across conditions or ages. Thus, although 

habituation is important for capturing some of the behavior in this task, it does 

not appear to be important for describing differences across cues. We thus focus 

further analysis on association orders. 

 



 14 

Figure 5: Distribution of habituation order across conditions. Unlike the distribution of association 

orders across conditions (Figure 4), the habituation parameters were consistent across ages and cue 

types. Thus, habituation plays a role in directing eye movements in this task, but does not do so 

differently for different types of cues. 

 

How did the learners in the different conditions learn? In addition to the 

learning rates found to best describe each infant, the models included weights for 

both cue and salience strength (eq. 4). We investigated the relationship between 

these parameters across conditions. Because the cue and object salience compete 

directly, we should expect a negative correlation between these two parameters 

across infants. The relationship of these parameters to learning rates, however, is 

not specified by the model’s form. We thus investigate this relationship 

empirically. Did infants who learned have eye movements driven more by cues 

(face or square) or by object salience (object presence)? Figure 6 shows the cue 

and salience parameters for each infant (standardized to z-scores). Infants who 

did not learn (Na = 0), linear learners (Na = 1), and quadratic learners (Na = 2) 

are represented by different markers. These distributions differed considerably 

across conditions. 
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In the 8 months Face condition, there was a clear separation between 

learners and non-learners. The successful learners were characterized by a strong 

preference for cue over salience. The infants whose looking was driven more by 

the cue than by the salient objects may have been more able to learn the 

relationship isolated by the cue. Thus, there was a strong positive correlation 

between the difference between cue and salience weights, and having a non-zero 

association order (r = .395, p < .05). 

 At first glance, the 8-month-old Square condition looks similar. Again, 

infants who were drawn too strongly by the salient objects relative to the cue did 

not learn successfully (r = .440, p < .05). A second cluster, however, is apparent 

on the graph: the infants who learned more slowly (linear) were also those who 

assigned the most weight to the cue relative to the salient objects. Perhaps these 

infants were drawn to the cue, rather than the objects, and therefore did not learn 

the multimodal relationship. If they were drawn to the cue, infants must have 

attended to the cue covertly (without fixating on the cue) because total looking 

time to the cued object was similar between the 8 months Face and 8 months 

Square conditions.  

Finally, the 4-month-old Face condition showed two qualitatively different 

groups of learners. The linear learners were predominantly those whose looking 

was driven more by the salient objects than by the cue. In contrast, the quadratic 

learners showed predominantly the opposite pattern (similar to the 8 months 

Face condition). This distinction suggests that the 4-month-old infants may have 

been learning in two different ways, one way more sophisticated than the other. 

As in the 8-month-old Face condition, but not in the 8-month-old square 

condition, the best learning was exhibited by infants who attended predominantly 

to cued objects rather than to both objects. Nonetheless, some 4-month-olds cued 

by the face and some 8-month-olds cued by the square tended to ignore the cue 

and still learn the multimodal association. This alternative strategy perhaps 

requires more cognitive effort (learning associations in two locations) and more 

time. This analysis shows precisely why the model selection framework is 

powerful – it avoids the ‘perils’ of averaging across strategies [25]. 
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Figure 6: Weights for cued and salient locations across conditions labeled by learning score. The 

negative slope is a direct consequence of our null function, but the relationship of the parameters to 

learning rates is not. In fact, weighting the cue over the salient locations led to better learning in 

both 8 months conditions, with an eventual decline in the face condition. Two distinct clusters of 

learners were found among the 4-month-olds. 

 

In summary, we found that the weights of the two parameters in the learning 

function (Cued and Salience) were related to learning in both conditions for both 

age groups. In general, learners were most successful when they paid more 

attention to the cue than to the salient objects. However, the relationship was 

non-monotonic in the Square condition, with too much or too little attention to 

the cue leading to slower learning [26]. This result suggests a qualitative 

difference between the Face and Square conditions: infants may have processed 

the two cues differently. A crucial difference between the central social cue and 

the peripheral non-social cue is that the peripheral cue was wrapped around the 

target box. Perhaps this cue was harder to disengage from compared to the 

central cue, which occupied a separate spatial location from the cued event (for 

discussion, see [1]). The linear learners in the Square condition may have been 

compelled to look at the correct location, but focused on the cue itself rather than 

the multi-modal relationship. If there was an increased focus on the cue, it must 
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have been covert (without fixating on the cue) because total fixation length to the 

target object was similar between the two 8 months conditions [1]. 

Regarding the ability to disengage from the cue, the 4-month-olds who 

focused on the cued locations were the fastest to learn, perhaps engaging with 

the task most like the 8-month-olds. This notion suggests that more practice 

would allow more of these younger infants to exhibit successful learning. 

Combined with the results from the two 8 months conditions, these results 

suggest an optimal cue-weight parameter – a point of maximal return depending 

on the cue type and age of the infant.  While 8-month-olds who focus too much 

on the cue do not learn as quickly, 4-month-olds are slower processors of 

complex scenes and thus need relatively higher cue weights. Alternatively, 

because infants have just started following social cues at this age [6], perhaps 

infants who did not learn from the cue do not yet know how to learn from this 

cue (i.e., did not follow the cue purposefully). Future research should identify the 

underlying reasons driving looking behavior between and within groups. 

5.   Conclusions 

Following [1], which found that different cues elicit different audio-visual 

learning, we developed a model to show a more detailed picture of the learning. 

Importantly, this model proposed two underlying mechanisms of such 

differential learning. We found that both habituation and association played a 

role in learning from the cues, and that these processes were best characterized 

by different functions across age groups and cues. Eight-month-olds learned less 

quickly from a flashing square than from a face, perhaps because too much 

covert attention to the square led to difficulties processing the cued stimuli. 

Four-month-olds fell into two clusters – those who learned quickly by following 

the face cue, and those who learned more slowly by ignoring it. These results 

suggest that at four months, infants may be just on the cusp of learning from the 

face.  

A model selection method investigating individual infant behavior supports 

a deeper analysis of infant learning than statistical tests between infant groups in 

the standard preferential looking paradigm. As a result, the underlying 

mechanisms can be specified more completely, and distributions of individual 

differences across conditions and age groups can provide more data than binary 

tests of statistical significance. In order to understand infant learning we must 

move beyond documenting what can be learned, and begin asking why and how 

it is learned. Answering these questions will require us to make deeper 

inferences from eye movement data – to understand the processes which 

generate fixations and ultimately lead to learning. With the model selection 

framework, we can begin to unravel the contributions of internal and external 

drivers of this behavior. We can make eye movements make sense. 
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