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Abstract 

All computational models of word learning solve the problem 
of referential ambiguity by integrating information across 
naming events. This solution is supported by a wealth of 
empirical evidence from both adults and young children. 
However, these studies have recently been challenged by new 
data suggesting that human word learning mechanisms do not 
scale up to the ambiguity of real naming events. We replicate 
these experiments, collecting natural naming events both from 
a tripod-mounted camera and from a head-mounted camera 
that produced a “child’s-eye” view. Although individual 
naming events were equally ambiguous from both views, 
significant learning across events occurred only from the 
child’s own view. Thus, statistical word learning scales, but 
only from the right perspective. 
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Introduction 

Considerable evidence across domains suggests that 

infants are adept statistical learners, able to extract the 

regularities across many individually ambiguous learning 

instances (Fiser & Aslin, 2002; Saffran, 2003).  One such 

domain in which statistical learning might play an important 

role in is learning word-referent mappings. Indeed, word-

object co-occurrences across labeling instances is the core 

of every computational model of word learning, regardless 

of machinery (e.g. neural networks –  Li, Farkas, & 

MacWhinney, 2004; Regier, 2005; statistical  hypothesis 

testers – e.g. Blythe, Smith, & Smith, 2010; Frank, 

Goodman, & Tenenbaum, 2009; Siskind, 1996; machine 

translation – Fazly, Alishahi, & Stevenson, 2010; Yu, 

2008). This hypothesis is also supported by empirical 

evidence showing that both adults (e.g. Yu & Smith, 2007; 

Smith, Smith, & Blythe, 2011) and young children (e.g. 

Scott & Fischer, in press; Yu & Smith, 2008) can learn 

word-object mappings by integrating information across 

ambiguous naming events. 

But demonstrations of cross-situational learning in 

computational models and in simple laboratory experiments 

do not necessitate an important contribution of these 

mechanisms to real world word learning. Recently, Medina, 

Snedker, Trueswell, & Gleitman (in press) have argued that 

cross-situational learning – as demonstrated in the 

laboratory – will not scale up to the real world. In a world 

with many potential novel words, and highly cluttered 

scenes with many potential referents, learners may simply 

be unable to track the relevant co-occurrence statistics. 

To make their point, Medina et al. followed four young 

children around their homes and recorded their natural 

parent-child interactions with a video camera. These videos 

were used to create short naming vignettes by segmenting 

out the interactions in which mothers said the names of 

common objects. The sound in these interactions was 

muted, and an artificial language label was inserted at the 

point when the English label was uttered. Following the 

human simulation paradigm (Gillette, et al., 1999), adult 

participants watched these vignettes, and guessed the 

meaning of each word. Even though they saw multiple 

naming instances for each word, adults were unable to 

integrate across them to learn new words. In contrast to the 

results of previous cross-situational word learning 

experiments (e.g. Yu & Smith, 2007; Smith, Smith, & 

Blythe, 2011), participants in Medina et al.’s (in press) 

experiment did not learn across situations. The authors 

therefore concluded that natural naming events are too 

ambiguous for cross-situational word learning mechanisms, 

and that real word learning must occur exclusively in 

unambiguous ostensive naming events. 

Their conclusion is both a real possibility and 

fundamentally important, suggesting that – despite the 

models and laboratory evidence – word-referent learning is 

not a form of statistical learning. But should we accept 

Medina et al.’s conclusion? Here, we consider one 

limitation of their approach: the learner’s perspective. Their 

participants were exposed to natural naming events, but they 

saw these events from an unnatural perspective. That is, 

their participants tried to learn words from the perspective 

of an adult observer watching a child interact with a parent, 

not from the first person view of a child learner.  

Recent data collected from cameras placed on children’s 

foreheads has recorded marked differences between adults’ 

and children’s views (Aslin, 2009; Franchak & Adolph, 

2010; Smith, Yu, & Pereira, 2011; Yoshida & Smith, 2008). 

These differences could engage, or be optimal for, very 

different learning mechanisms (Gibson, 1969). They could 

also lead to different learning outcomes even from the same 

learning mechanism (Kuhl, 2004; Perry & Samuelson, 

2011; Smith, 2000) 

Accordingly, the studies in this paper replicate Medina et 

al.’s human simulation experiments, asking participants to 

learn words from ambiguous natural naming events. 

However, we recorded the same naming events from two 

perspectives: from a third-person perspective, and from the 

child’s own first-person perspective (Figure 1). We show 

that cross-situational word learning is a matter of 

perspective: learning is possible from the child’s own view. 



 
Figure 1: Mother-child interactions were recorded from two 

views: a tripod-mounted camera (left), and a camera low on 

the child’s forehead (right). 

Experiment 1 

The key theoretical idea behind cross-situational learning is 

that it enables learning from individually ambiguous 

learning events. Thus, we first needed to determine the 

difficulty of each naming event in order to determine the 

viability of learning across the most ambiguous events. In 

Experiment 1, naïve adult participants viewed the entire 

corpus of naming events. A beep was inserted into each 

naming vignette instead of an artificial language label, and 

participants were asked to guess which object the mother 

was naming. Participants could not learn by accumulating 

information across trials, giving us a measure of the 

individual ambiguity of each independent event. 

Method 

Participants. Four two to two-and-a-half year old children 

played with toys with their mothers while their interactions 

were recorded (mean age: 26;15, range: 25;12 – 27;10, 2 

female). Each child was compensated with a small gift for 

their help. Twenty-eight Indiana University undergraduates 

participated in the human simulation experiment in 

exchange for course credit. Half viewed the vignettes from 

the first-person perspective, and half viewed the vignettes 

from the third-person perspective. 

 

Stimuli. Children and their parents played with twenty-five 

toys chosen to broadly sample the kinds of toys with which 

young children are likely to play. These included animals, 

cars and trucks, colored rings, a telephone, and a baby doll 

(see Figure 1). Toys were arranged pseuodorandomly in a 

pile in the center of the room when the play session began.  

Vignettes were created by sampling the portions of the 

mother-child videos corresponding to natural naming 

events. Each time a mother said the name of one of the toys 

in the room, a vignette was created spanning from three 

seconds before the label was uttered to two seconds after. 

The audio was muted and a beep was inserted into the 

vignette at the moment at which the real label was uttered. 

If, in the natural interaction, the name was uttered again in 

the 2 seconds post-naming, another beep was inserted into 

the video at this point and a further 2 seconds of silent 

interaction were appended to the vignette. The entire corpus 

consisted of 196 such vignettes. 

 

Procedure. Children and their parents were told that we 

were interested in what toy play looked like from a child’s 

perspective, and that we would be recording their interaction 

from a tripod-mounted camera as well as from a camera on 

the child’s head. After the child put on the camera and a vest 

carrying the power supply, they played with the toys for 10 

minutes. Their play was unconstrained.  

Adults were informed that they would be watching videos 

of naming events from a set of mother-child interactions. 

They were told that the beep in each video corresponded to 

a moment in the real interaction when the mother labeled 

one the toys, and that they should try to guess the referent in 

each video. They were told that multiple beeps within a 

single video always corresponded to a single referent. 

Adults watched each vignette in the corpus once, either 

from the first or the third-person perspective. At the end of 

each vignette, they were asked to type in the most likely 

referent in a free-response prompt. Each adult first watched 

three vignettes from a pilot experiment to ensure that they 

understood the task. They were prompted to make a guess 

on each vignette, and to describe the target as 

unambiguously as possible (e.g. “white stuffed animal”) if 

they could not determine its exact identify (e.g. bunny, 

sheep). This was done to minimize misidentification errors 

which may have distorted differences between the two 

camera views.  

We note briefly that these instructions differed from those 

used by Medina et al (2011), who did not inform 

participants that the target was an object nor accept guesses 

which did not exactly identify the target (e.g. “purse” was 

considered an incorrect guess for “bag.”) Pilot data from a 

group of participants not told that words referred to objects 

contained a significant proportion of the guesses that were 

function words (e.g. “the”), pronouns (e.g. “it”), or 

onomatopoeias (e.g. “whoosh”). We felt that these answers 

were unlikely to be in the conceptual spaces of young 

children, and that our instructions increased the tenability of 

the human simulation hypothesis as a simulation of young 

learners (Gillette, 1999). Medina and colleagues informed 

us that such a change in instructions did not qualitatively 

change the pattern of data they observed (Medina, personal 

communication).  

Results and Discussion 

Since we are interested in the population of naming events 

rather than the populations of adults making guesses, 

following Medina et al. (in press) we aggregate guesses by 

vignette rather than guesses by participant. Overall, 

participants were generally successful at identifying the 

named target object in each video, with just over half of all 

guesses being correct. Guessing accuracy did not differ 

significantly across conditions, suggesting that average 

ambiguity is the same from each view (M1st = .58, M3rd  = 

.58, t(195) = .26, n.s.). However, ambiguity across vignettes 

was highly variable from both camera views. 

 

 



 
Figure 2: Naming event accuracy was highly bimodal from 

both views. Only the most ambiguous events, as measured 

in Experiment 1, were used in Experiment 2. 

 

As shown in Figure 2, the distribution of difficulty across 

vignettes was bimodal from both views. Approximately half 

of naming the events were either highly ambiguous (≤10% 

accuracy) or highly unambiguous (≥90% accuracy). This 

ambiguity distribution suggests that while many naming 

events may be unambiguous, a large proportion are likely to 

be opaque to single-instance learning mechanisms. These 

ambiguous naming events are exactly the kind of input over 

which cross-situational learning mechanisms are 

hypothesized to operate. But can humans learn by 

integrating information across these difficult naming 

events?  

Experiment 2 

In Experiment 1, participants gave their best guess on each 

individual vignette, providing a measure of ambiguity for 

each individual naming event. In Experiment 2, participants 

were exposed to the most ambiguous vignettes from 

Experiment 1, but the beep in each was replaced by an 

artificial language label. Since participants saw multiple 

vignettes for each label, they could, in principle,  learn by 

aggregating information across these instances If cross-

situational word learning does not scale, as argued by 

Medina et al. (in press) then guess accuracy should not 

increase across vignettes. If, in contrast, inability to learn 

across ambiguous instances is peculiar to the third-person 

view, then participants who saw the same naming events 

from the child’s perspective should show better guess 

accuracy after multiple vignettes. 

Method 

Participants. Forty-eight Indiana University undergraduate 

students participated in exchange for course credit. Twenty-

four participants watched vignettes from the first-person 

perspective, and twenty-four from the third-person 

perspective. None previously participated in Experiment 1. 

 

Stimuli. Stimuli for Experiment 2 were a subset of the 

naming event vignettes used in Experiment 1. However, 

instead of replacing each naming utterance with a beep as in 

Experiment 1, each naming utterance was replaced with an 

artificial language label. Labels were all produced by a 

female native speaker of English. Seven unique labels were 

produced, one for each of five toys that participants were 

asked to learn cross-situationally, and two that were used in 

example vignettes to acquaint participants with the task. 

Vignettes were chosen for Experiment 2 were those for 

which participant guessing accuracy was low in Experiment 

1. Four vignettes for each of five objects were chosen under 

the constraints that all could not come from the same parent-

child interaction, no two vignettes for the same object could 

overlap in the original interaction, and participant guessing 

accuracy for each event must have been less than 30% in 

Experiment 1. Mean Experiment 1 guess accuracy for these 

vignettes is shown in Figure 3.  

 

Procedure. Participants were again instructed that they 

would be watching vignettes constructed from natural 

parent-child interactions, and that each vignette would 

correspond to a moment in the real interaction at which the 

mother labeled one of the toys in the room. They were asked 

to guess the toy most likely to correspond to the artificial 

language label in each video, and that each individual label 

would always refer to the same toy. 

 

 
Figure 3: Vignettes for Experiment 2 were chosen to be 

comparably difficult across views. Solid bars show mean 

Experiment 1 guess accuracy for the four vignettes used for 

each object in Experiment 2. Error bars indicate +/- 1 

standard error. 



Results and Discussion 

Figure 4 shows participant guess accuracy on each situation 

from both views. Accuracy on the first instance of each 

vignette was quite low, and not significantly different across 

views (M1st = .12, M3rd = .10, t(46) = .34, n.s.). This 

validates the difficulty measure from Experiment 1, and 

verifies that participants saw highly ambiguous vignettes in 

Experiment 2. But, while accuracies were comparable 

across views on the first instance of each vignette, they 

rapidly diverged after more instances were encountered. 

From the third person view, accuracy did not increase 

significantly from the first vignette to any of the successive 

vignettes (M2 = .11, t(23) = .46, n.s.; M3 = .16, t(23) = 1.43, 

n.s.; M4 = .15, t(23) = .97, n.s.). Further, guessing accuracy 

was uncorrelated with vignette number, indicating that 

participants were not learning across instances (r = .12, 

n.s.). Thus, Experiment 2 replicates Medina et al.’s (in 

press) results, showing no evidence of learning across 

ambiguous instances from the third-person perspective. 

 The results from the first-person view, however, tell a 

different story: accuracy increased marginally from the first 

to the second vignette (M = .22, t(23) = 1.90, p = .07), and 

was significantly higher on the third (M = .25, t(23) = 2.50, 

p < .05) and fourth vignettes (M = .26, t(23) = 3.09, p < .05). 

Further, vignette number and guess accuracy were 

significantly correlated (r = .27, p < .01). Thus, guessing 

accuracy increased over exposure to multiple ambiguous 

instances, indicating that participants were integrating 

information across vignettes to learn the target of each label. 

What explains these marked differences across views? 

One possibility is that differences in learning are explained 

by different accessibility of the children’s own knowledge. 

If children knew the English labels spoken in each vignette, 

they may have shifted their gaze in response to labeling, and 

these gaze shifts could have been easier to access from the 

child’s view. Since accuracy was comparable across views 

in Experiment 1, and for the first vignette for each label in 

Experiment 2, it is not likely to have been the main driver of 

learning differences, but it could nonetheless have 

contributed. To test this possibility, post-referential gaze 

shift behavior was recorded by a naïve coder for each of the 

20 naming events participants saw Experiment 2. This coder 

was asked to identify the target of the first gaze shift after 

the beep in each vignette, or alternatively to indicate that no 

shift occurred. On 12 of the 20 naming events, children 

shifted their gaze in the 2-seconds after the label was heard. 

However, only 5 of these gaze-shifts were directed at the 

named object, and the remaining 7 were shifts to other toys 

in the room. Thus, post-referential gaze shifts were not 

generally a good source of information in these vignettes.  

But differences in learning rates could nevertheless reflect 

use of this information. Each vignette was assigned one of 

three values: no gaze shift (0), shift to correct object (1), or 

shift to incorrect object (-1). Average shift information of 

the four vignettes for each label were then used to predict 

differences in final gaze accuracy across views, but were not 

found to be correlated (r = .01, n.s.). Thus, we can conclude 

 
Figure 4: Naming event accuracy across instances from both 

views. Significant learning across instances was found only 

from the first-person view 

 

that children’s own knowledge embodied in the videos does 

not explain difference in learning from the two views. 

Another possibility is that differences in learning from the 

two views can be explained by differences in memory. 

Because of the complexity of the third-person view, it is 

possible that participants were forgetting correct guesses 

and thus effectively being prevented from learning (Medina 

et al., in press). To test this possibility, we calculated the 

conditional probability of making a correct guess on the 

current vignette given that a correct guess was made on the 

previous vignette for the current word. For instance, if a 

participant correctly guessed that ‘humbi’ referred to the 

cow on the second vignette, would that participant give the 

same correct guess on the third vignette for ‘humbi?’ After 

six participants who made no correct guesses were 

excluded, conditional probability of making a correct guess 

did not differ significantly across views (M1st = .43, M3rd = 

.33, t(39) = .79, n.s.), although the first-person view did 

show a slight advantage. Thus, differences in learning 

across the views do not seem to stem from differences in 

memorability of guesses. 

A third possibility is that the different views gave rise to 

genuinely different learning strategies. In each vignette 

participants saw a number of different toys which could 

have been the target of the label. But, in contrast to standard 

cross-situational word learning experiment, each object was 

not equally salient (Yu & Smith, 2007; Smith, Smith, & 

Bythe, 2011). Each vignette presented a natural interaction 

with many kinds of cues to reference other than co-

occurrence frequency, and the different views may have 

made this information differentially available. If these cues 

are highly salient, they may be given high weight even when 

they conflict with co-occurrence information. One way to 

measure this is examine how exposure to multiple vignettes 

for a label changed the dispersion of participants’ guesses 

within a single vignette. If participants integrate information 



across vignettes, then dispersion of guesses within a single 

vignette should increase. This is because participants will 

explore portions of possible object space cued not just by 

the properties of the current vignette, but also by co-

occurrence information from previous vignettes. In contrast, 

if participants give high weight to other cues, co-occurrence 

information should have little effect on the guesses they 

entertain. 

To measure dispersion, we use the entropy of the set of 

guesses made by all participants. Entropy integrates both the 

number of unique objects guessed and the relative frequency 

of each object. Entropy is maximized when many objects 

are chosen with equal frequency, and minimized when all 

participants guess the same object. If participants are 

changing their guessing strategy over exposure to multiple 

vignettes, then guess entropy should be higher in 

Experiment 2 than it was in Experiment 1. In contrast, if 

participants are guessing based only on the current vignette, 

perhaps having their attention divided by many potential 

cues to reference, entropy should be the same across the 

experiments. Guess entropy for the four vignettes for each 

word seen by participants in Experiment 2 were submitted 

to a 2 (Experiment) x 2 (View) mixed ANOVA. Results 

showed a significant main effect of view (F(1,8) = 28.38, p 

< .001) moderated by a significant interaction between view 

and experiment (F(1,8) = 12.59, p < .01). Follow-up tests 

showed that entropy did not differ between views in 

Experiment 1 (t(8) = .72, n.s.), and that entropy increased 

significantly from Experiment 1 to Experiment 2 for the 

first-person view (t(4) = 13.71, p < .001), but not the third-

person view (t(4) = .94, n.s.). Thus, participants in the first-

person condition changed their guessing strategy when they 

had multiple vignettes for each video, but participants in the 

third-person condition did not. Figure 5 shows guess 

entropies across views and experiments.  

 

 
Figure 5: Entropy of participant guesses for vignettes from 

Experiments 1 and 2. There was no difference in dispersion 

for the third-person view, suggesting that participants were 

not using co-occurrence information. 

General Discussion 

Children could learn words only from unambiguous naming 

events. Alternatively, they could learn the meanings of 

words from a broader array of potentially noisy data, 

tracking the co-occurrence statistics of words and potential 

referents they encounter. Because children learn words so 

rapidly, acquiring more than 1300 words by 30 months of 

age (Mayor & Plunkett, 2010), many have argued that this 

learning cannot emerge from just unambiguous naming 

events, but must also reflect the integration of information 

from less informative events (e.g. Blythe, Smith, & Smith, 

2011; Siskind, 1996; Yu & Smith, 2007). This claim has 

been supported empirically by evidence that adults and 

infants are sensitive to the statistics of co-occurrence 

between words and objects (Smith & Yu, 2008; 

Vouloumanos, 2008; Smith, Smith, & Blythe, 2011). 

However, whereas ambiguity in these experiments has been 

manipulated by presenting multiple isolated objects on the 

screen, the ambiguity of real world naming events may be of 

a totally different character. Medina et al. (in press) exposed 

participants to ambiguous natural naming events and found 

no learning over multiple naming events for the same label. 

Consequently, they argued that statistical learning is a 

laboratory phenomenon. 

But participants in these experiments saw natural naming 

from an unnatural perspective: that of an adult observer. In 

this paper, we replicate Medina et al.’s (in press) results, but 

show that participants do integrate information over the 

same exact naming events when they are viewed from the 

perspective of the child to whom they are directed. 

Although more work must be done to determine the exact 

origins of this difference, one likely possibility is that it 

arises from differential access to other cues to reference 

provided by the two views. While the information in the 

child’s view is not the same as the information available in 

standard cross-situational laboratory experiments, the 

child’s view may be more like these laboratory tasks than it 

is like the third-person view. Thus, if we wish to study the 

ambiguity structure of natural naming events, we stress the 

importance of considering the visual information they 

actually provide. 

None of this is intended to discount the importance of 

clear, unambiguous naming events. Mounting evidence, for 

instance, suggests that statistical speech segmentation is 

bootstrapped by exposure to isolated words (Brent & 

Siskind, 2001; Lew-Williams, Pelucchi, & Saffran, 2011). It 

is likely that word learning operates similarly, and that 

information from ambiguous events is integrated with 

unambiguous events, perhaps weighted in proportion to its 

uncertainty (e.g. Fazly; Alishahi, & Stevenson, 2010; Frank, 

Goodman, & Tenenbaum, 2009; Yu, 2008). We only wish 

to point out that the even ambiguous events contain 

structure, that humans are sensitive to this structure, and that 

this structure is likely to contribute to word learning. Since 

there are so many words to learn, children are likely to use 

all of the information they can get (Recchia & Jones, 2009). 
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