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Word-object co-occurrence statistics are a powerful information source for vocabulary learning, but there
is considerable debate about how learners actually use them. While some theories hold that learners
accumulate graded, statistical evidence about multiple referents for each word, others suggest that they
track only a single candidate referent. In two large-scale experiments, we show that neither account is
sufficient: Cross-situational learning involves elements of both. Further, the empirical data are captured
by a computational model that formalizes how memory and attention interact with co-occurrence
tracking. Together, the data and model unify opposing positions in a complex debate and underscore
the value of understanding the interaction between computational and algorithmic levels of explanation.
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Natural languages are richly structured. From sounds to pho-
nemes to words to referents in the world, statistical regularities
characterize the units and their connections at every level.
Adults, children, and even infants have been shown to be sensitive
to these statistics, leading to a view of language acquisition as a
parallel, possibly implicit, process of statistical extraction (Gómez
& Gerken, 2000; Saffran, Aslin, & Newport, 1996). Recent experi-
ments across a number of domains, however, show that human
statistical learning may be significantly more limited than previ-
ously believed (Johnson & Tyler, 2010; Trueswell, Medina, Hafri,
& Gleitman, 2013; Yurovsky, Yu, & Smith, 2012).

We focus here on the use of statistical regularities to learn the
meanings of concrete nouns (known as cross-situational word
learning; Pinker, 1989; Siskind, 1996; Yu & Smith, 2007). Because
words’ meanings are reflected in the statistics of their use across
contexts, learners could discover the meaning of the word ‘‘ball’’
(for instance) by noticing that while it is heard across many
ambiguous contexts, it often accompanies play with small, round
toys. A growing body of experiments shows that adults, children,
and infants are sensitive to such co-occurrence information, and
can use it to map words to their referents (Smith & Yu, 2008;
Suanda, Mugwanya, & Namy, 2014; Vlach & Johnson, 2013; Yu &
Smith, 2007).

Information about a word’s meaning can thus be extracted from
the environmental statistics of its use (Frank, Goodman, &
Tenenbaum, 2009; Siskind, 1996). But this analysis is posed at
what Marr (1982) called the ‘‘computational theory’’ level: dealing
only with the nature of the information available to the learner. At
the ‘‘algorithmic’’ level—the level of psychological instantiation in
the mind of the learner—this idealized statistical computation
could be realized in many ways, and the computation human
learners actually perform is a topic of significant debate (see e.g.,
Yu & Smith, 2012).

Do human learners really track and maintain a representation
of word-object co-occurrences? Some evidence suggests that
humans are indeed gradual, parallel accumulators of statistical
regularities about the entire system of word-object
co-occurrences, simultaneously acquiring information about mul-
tiple candidate referents for the same word (McMurray, Horst, &
Samuelson, 2012; Vouloumanos, 2008; Yurovsky, Fricker, Yu, &
Smith, 2014). Other evidence suggests that statistical learning is
a focused, discrete process in which learners maintain a single
hypothesis about the referent of any given word. This referent is
either verified by future consistent co-occurrences or instead
rejected, ‘‘resetting’’ the learning process (Medina, Snedeker,
Trueswell, & Gleitman, 2011; Trueswell et al., 2013). While both
of these algorithmic-level solutions will, in the limit, produce suc-
cessful word-referent mapping, they will do so at very different
rates. In particular, if learners track a only a single referent for each
word, it may be necessary to posit additional biases and con-
straints on learners in order for human-scale lexicons to be learned
in human-scale time from the input available to children (Blythe,
Smith, & Smith, 2010; Reisenauer, Smith, & Blythe, 2013).

To distinguish between these two accounts, previous experi-
ments exposed learners to words and objects in which
co-occurrence frequencies indicated several high-probability refer-
ents for the same word. At the group level, participants in these
experiments showed gradual learning of multiple referents for
the same word (e.g., Vouloumanos, 2008; Yurovsky, Yu, & Smith,
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2013); but gradual, parallel learning curves can be observed at the
group level even if individuals are discrete, single-referent learners
(Gallistel, Fairhurst, & Balsam, 2004; Medina et al., 2011).
Experiments measuring the same learner at multiple points—a
stronger test—have produced mixed results. In some cases, learn-
ers showed clear evidence of tracking multiple referents for each
word, suggesting a distributional approximation mechanism at
the algorithmic level (Dautriche & Chemla, 2014; Smith, Smith, &
Blythe, 2011; Yurovsky et al., 2013). In other experiments, how-
ever, learners appear to track only a single candidate referent,
and to restart from scratch if their best guess is wrong (Medina
et al., 2011; Trueswell et al., 2013).

These mixed results expose a fundamental gap in our
understanding of the mechanisms humans use to encode and track
environmental statistics critical for learning language. Evidence for
each account is separately compelling, but neither account can
explain the evidence used to support the other. Because previous
experiments differ along a number of dimensions—e.g., methodol-
ogy, stimuli, timing, and precision of measurement—it has been
difficult to integrate them to understand why cross-situational
learning sometimes appear distributional and sometimes appear
discrete (for a review, see Yurovsky et al., 2014).

We propose that differences in task difficulty may explain
diverging results across experiments. Two salient dimensions vary
across previous studies: ambiguity of individual learning instances,
and the interval between successive exposures to the same label
(Fig. 1). As attentional and memory demands increase, learners
may shift from statistical accumulation to single-referent tracking
(Smith et al., 2011; Trueswell et al., 2013).

We present a test of this hypothesis, adapting a paradigm first
introduced in Bower and Trabasso (1963) to study the information
learners store in concept identification. We parametrically manip-
ulated both the ambiguity of individual learning trials and the
interval between them and measured multiple-referent tracking
at the individual-participant level. Even at the maximum difficulty
tested, learners tracked multiple referents for each word; this
result constitutes strong evidence against a qualitative shift from
statistical accumulation to single-referent tracking. The data also
show that learners encode the referents with differing strengths,
however, remembering their hypothesized referent much better.
Thus, each previous account appears to be partially correct.

To clarify how these two accounts are related, we implemented
both single-referent tracking and statistical accumulation as
computational models. We also extended these accounts into an
integrative model that subsumes both as special cases along a con-
tinuum. Only the integrative model accounted for our full dataset.
Vouloumanos (2008)

Yurovsky et al. (2013a)

Yurovsky et al. (2013b)

K. Smith et al. (2011)

Trueswell et al. (2013)
Medina et al. (2011)

Dautriche & Chemla (2014)
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Fig. 1. Results of previous experiments investigating representations for cross-
situational learning. These experiments vary along a number of dimensions, but
two appear to predict whether multiple-referent tracking is observed: the number
of referents present on each trial, and the interval between trials for the referent.
Further, this model was able to make nearly perfect parameter-free
predictions for a follow-up experiment that was designed to verify
that learners encode mappings rather than individual words and
objects. We conclude that cross-situational word learning is best
characterized by an integrative account: Learners track both a sin-
gle target referent and an approximation to the co-occurrence
statistics; the strength of this approximation varies with the
complexity of the learning environment.
1. Experiment 1

We designed Experiment 1 to estimate learners’ memory for
both their single best hypothesis about the correct referent of a
novel word and their additional statistical knowledge as demands
on attention and memory varied. Participants saw a series of
individually ambiguous word learning trials in which they heard
one novel word, viewed multiple novel objects, and made guesses
about which object went with each word. To succeed, participants
needed to encode at least one of the objects that co-occurred with
a word, remember it until their next encounter with that word, and
check whether that same object was again present. If participants
encoded exactly one object, they would succeed only when their
initial hypothesis was correct. However, the more additional
objects participants encoded on their first encounter with a word,
the greater their likelihood of succeeding even if their initial
hypothesis was incorrect.

Rather than allowing chance to determine whether participants
held the correct hypothesis on their first exposure to a novel word,
the set of novel objects presented on the second exposure to each
word was constructed based on participants’ choices. On Same
trials, the participant’s hypothesized referent was pitted against a
set of novel competitors. In contrast, on Switch trials, one of the
objects the participant had previously not hypothesized was
pitted against a set of novel competitors (see Fig. 2). Logically,
either a single-referent tracking or a statistical accumulation
mechanism will succeed on Same trials. However, only statistical
accumulation of information about non-target items can succeed
at above-chance levels on Switch trials.

1.1. Method

1.1.1. Participants
Experiment 1 was posted to Amazon Mechanical Turk as a set of

Human Intelligence Tasks (HITs) to be completed only by partici-
pants with US IP addresses that paid 30 cents each (for a detailed
comparison of laboratory and Mechanical Turk studies see
Crump, McDonnell, & Gureckis, 2013). Ninety HITs were posted
for each of the 16 Referent � Interval conditions for a total of
1440 paid HITs. If a participant completed the experiment more
than once, he or she was paid each time, but only data from the
first HIT completion was included in the final data set (excluded
180 HITs). In addition, data was excluded from the final sample if
participants did not give correct answers for familiar trials
(64 HITs, see Design and Procedure). The final sample thus com-
prised 1196 unique participants, approximately 75 participants
per condition (range: 71–81).

1.1.2. Stimuli
Stimuli for the experiment consisted of black and white pictures

of familiar and novel objects and audio recordings of familiar and
novel words. Pictures of 32 familiar objects spanning a range of
categories (e.g. squirrel, truck, tomato, sweater) were drawn from
the set constructed by Snodgrass and Vanderwart (1980).
Pictures of distinct but difficult to name novel objects were drawn
from the set of 140 first used in Kanwisher, Woods, Iacoboni, and



Fig. 2. A schematic of the experimental trials seen by participants in Experiments 1 and 2. On their first exposure to each novel word, participants were asked to guess its
correct referent. In Experiment 1, the second trial for each word was either a Same trial—the set of referents contained the participant’s previous hypothesis, or a Switch trial—
the set of referents contained one the participant had previously not hypothesized. In Experiment 2, Switch trials were replaced with New Label trials that showed same set of
referents but a played a novel word. The number of referents on the screen and the interval between successive exposures to the same word varied across conditions.
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Mazziotta (1997). For ease of viewing on participants’ monitors,
pixel values for all pictures were inverted so that they appeared
as white outlines on black backgrounds (see Fig. 2). Familiar words
consisted of the labels for the familiar objects as produced by AT&T
Natural Voices™ (voice: Crystal). Novel words were 1–3 syllable
pseudowords obeying the rules of English phonotactics produced
using the same speech synthesizer.
1 It is possible that forcing participants to select an object on each trial could have
changed their performance. However, control conditions from three previous
experiments suggest that empirically this is not the case Medina et al. (2011),
Smith et al. (2011), and Trueswell et al. (2013).
1.1.3. Design and procedure
Participants were exposed to a series of trials in which they

heard a word, saw a number of objects, and were asked to indicate
their guess as to which object was the referent of the word. After a
written explanation of this procedure, participants were given four
practice trials to introduce them to the task. On each of these trials,
they heard a Familiar word and saw a line drawing of that object
among a set of other familiar objects. On the first two trials,
participants were asked to find the squirrel, and the correct answer
was in the same position on each trial. On the next two trials, par-
ticipants were asked to find the sweater, and the correct answer
switched positions from the first to the second trial (in order to
ensure that participants understood that on-screen position was
not an informative cue to the correct target). These trials also
served to screen for participants who did not have their audio
enabled or who were not attending to the task.

After these Familiar trials, participants were informed that
they would now hear novel words, and see novel objects, and that
they should continue selecting the correct referent for each
word. Participants heard each of the eight novel words twice, but
the order in which these words were presented and the number of
objects seen on the screen varied across sixteen between-subjects
conditions. Participants saw either 2, 3, 4, or 8 Referents on
each trial, and the two trials for each word occurred either
back-to-back, or were interleaved between trials for other words
for an Interval of 1, 2, 3, or 8. Four of these follow-up trials were
Same trials in which the referent that participants selected on
the first encounter with that object appeared again amongst the
set of objects. The other four were Switch trials in which one of
the referents in the set was selected randomly from the objects a
participant did not select on the previous exposure to that word.
All other referents were completely novel on each trial. The num-
ber of referents on Familiar trials for each participant matched the
number of referents they would see on Same and Switch trials.

Because participants performed this task over the internet, it
was important to indicate to them that their click had been regis-
tered. Thus, a red dashed box appeared around the object they
selected on for 1 s after their click was received. This box appeared
around the selected object whether or not it was the ‘‘correct’’
referent.1

1.2. Results

Do statistical learners encode multiple referents for each word,
or do they instead encode only a single hypothesized referent? The
top row of Fig. 3 shows participants’ accuracies in identifying the
referent of each word in all conditions for both kinds of trials
(Same and Switch). To determine whether participants were learn-
ing word-referent mappings, we asked whether these accuracies
were significantly different than would be expected by chance.
Because these accuracies were estimated from a small number of
discrete choices for each participant in each condition, they violate
the assumptions of standard continuous analyses like t-tests. A
better model of chance behavior for this data is a Binomial distribu-
tion with a probability of success p ¼ 1=#Referents.

To test whether participants’ selecting the previously exposed
referents more often than predicted by this null model, we
fit logistic regressions for each Referent, Interval, and Trial Type
combination. These modes were specified as Correct � 1 +

offset(logit(1/Referents)), where the offset encodes the
chance probability of success given the number of referents. The
intercept term in each of these models captures on a log-odds scale
how much more likely participants are to select the correct refer-
ent than would be expected by chance. At all Referent and
Interval levels, both for Same and for Switch trials, participants
chose the correct referent more often than would be expected by
chance (smallest b ¼ :393; z ¼ 2:55, all ps 6.01). Thus, learners
encoded more than a single hypothesis in ambiguous word learn-
ing situations, even under high levels of memory and attentional
load.

Next, to quantify the effect of each factor on word learning, we
fit a mixed-effects logistic regression model to the data from the
full dataset (Baayen, Davidson, & Bates, 2008). All mixed-effects
models presented in the paper were implemented in R 3.13 using
version 1.1-7 of the lme4 package. Because of the complexity of
the dataset, we constructed models iteratively, with first main
effects and then interaction terms added as long as they
significantly improved the fit of the model to the data (measured
by likelihood comparison tests using v2). In addition, as in the
comparison to chance above, we used an offset of logit(1=Referents)
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Fig. 3. Proportion of repeated referents selected by participants at each combination of number of Referents and Interval on Same and Switch trials in Experiment 1, and Same
and New Label trials in Experiment 2. Each datapoint represents �75 participants in Experiment 1 and �50 participants in Experiment 2. Error bars indicate 95% confidence
intervals computed by non-parametric bootstrap. Learning in all conditions of Experiment 1 differed from chance and declined mostly due to Interval for Same trials but
mostly due to Referents for Switch trials. Experiment 2 Same trials replicated performance in Experiment 1 Same trials, but New Label trials were different from Switch trials
in all Referent and Interval conditions.
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so that each Referents condition was corrected for its different
chance performance probability.

This analysis showed a significant Intercept term—indicating
globally above-chance performance—as well as main effects of
Interval and Trial Type. In addition, the model showed significant
two-way interaction between Referents and Trial Type and
Interval and Trial Type (Table 1). Thus, while word learning was
best at low levels of referential ambiguity and at low memory
demands, the decreases in word learning observed on Same and
Switch trials were due to different factors. For Same trials, the
number of Referents played a relatively small role in the difficulty
of learning, while the Interval between learning and test played a
large role. However, for Switch trials, because performance was
comparatively less good at low Intervals, there was relatively little
decline in word mapping as Interval increased but a large decline
due to number of Referents.

These data suggest that neither the single-referent tracking nor
the statistical accumulation account of cross-situational word
learning is correct. Although learners did encode multiple
referents, they did not encode them all with equal strength.
Memory for the hypothesized referent was stronger than for
non-hypothesized referents at all referent-set sizes and at all
intervals. Further, the difference between them grew with number
of referents. Thus, it appears that a new account is necessary that
integrates elements of both single-referent tracking and accumula-
tive statistical tracking.
Table 1
Predictor estimates with standard errors and significance information for a logistic
mixed-effects model predicting word learning in Experiment 1. The model
was specified as Correct � Log(Referents) ⁄ TrialType + Log(Interval) ⁄
TrialType + offset(logit(1/Referents)) + (TrialType|subject).

Predictor Estimate Std. error z value p value

Intercept 4.31 0.28 15.18 <.001 ⁄⁄⁄

Log(Referents) 0.17 0.10 1.66 0.10 .
Log(Interval) �0.68 0.07 �9.72 <.001 ⁄⁄⁄

Switch trial �2.16 0.30 �7.22 <.001 ⁄⁄⁄
Log(Referents) ⁄ Switch trial �0.68 0.11 �6.20 <.001 ⁄⁄⁄

Log(Interval) ⁄ Switch trial 0.54 0.07 7.34 <.001 ⁄⁄⁄
Before presenting a formal integrative account in the Model
section below, we first rule out one other possibility. Because the
set of competitors for each target referent was distinct, partici-
pants could have succeeded on Switch trials by selecting the most
familiar object regardless of which word they were hearing. If so,
these data would be consistent with a slightly amended
single-referent tracking account in which learners also have some
residual memory for previously-seen objects but have not learned
them as word-object mappings. Experiment 2 presents a new
learning condition to test this possibility.

2. Experiment 2

Participants’ above-chance accuracies on Switch trials in
Experiment 1 provide evidence of their memory for multiple
objects, but not necessarily for the formation of referential map-
pings between the objects and the novel words. To rule out this
second possibility, Experiment 2 replaced Switch Trials with New
Label trials in which participants saw an object they had previously
not selected among a set of novel competitors but heard a New
Label (Fig. 2). If success on Switch trials was due purely to referent
familiarity, New Label trials should produce similar responses. In
contrast, if success on Switch trials was due to a learned mapping
between words and referents, New Label trials should show a
different pattern of performance.

2.1. Method

2.1.1. Participants
As in Experiment 1, participants for Experiment 2 were

recruited from Amazon Mechanical Turk under the constraint that
they had a US IP address. Each HIT paid 30 cents for completion.
Sixty HITs were posted for each of the sixteen Referent � Interval
conditions for a total of 960 paid HITs. Participants were again paid
for multiple HITs, but only data from their first was included in the
final set (excluded 100 HITs). In addition, data was again excluded
from the final sample if participants did not give correct answers
for familiar trials (60 HITs). The final sample thus comprised 803
unique participants, approximately 50 participants per condition
(range: 41–55).



Table 2
Predictor estimates with standard errors and significance information for a logistic
mixed-effects model predicting word learning in Experiment 2. The model
was specified as Correct � Log(Referents) + Log(Interval) ⁄ TrialType +
offset(logit(1/Referents)) + (TrialType | subject).

Predictor Estimate Std. error z value p value

Intercept 3.42 0.21 16.10 <.001 ⁄⁄⁄

Log(Referents) 0.32 0.06 5.52 <.001 ⁄⁄⁄

Log(Interval) �0.60 0.07 �8.22 <.001 ⁄⁄⁄

New Label trial �4.49 0.19 �23.52 <.001 ⁄⁄⁄

Log(Interval) ⁄ New Label
trial

0.58 0.08 6.89 <.001 ⁄⁄⁄
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2.1.2. Stimuli, design, and procedure
All aspects of the Stimuli, Design, and Procedure of Experiment

2 were identical to those of Experiment 1 except for the
construction of New Label trials. On these trials, the set of candi-
date referents was the same as on Switch trials in Experiment 1,
but the word was novel (Fig. 2).

2.2. Results

Participants showed robust evidence of learning mappings
(rather than simply tracking familiar objects). As in Experiment
1, we used logistic regression to determine whether participants
chose the previously-seen referent on test trials at above-chance
levels. As before, participants selected their perviously guessed ref-
erent on Same trials at levels far exceeding chance (smallest
b ¼ 1:39; z ¼ 8:17, all ps <.001). In contrast, on New Label trials—
in which a novel label was paired with a previously seen but not
guessed referent—participants never selected the previous referent
at above-chance levels. Further, in the 2 and 3 Referents condi-
tions, they reliably selected the previously seen but not guessed
referent at below chance levels (largest b ¼ �:32; z ¼ 1:95, all ps
6.05). In the 4 and 8 Referents conditions, participants also
selected the previously seen referent less frequently than predicted
by chance, but this difference was not statistically reliable.

To determine whether performance on these harder New Label
trials was nonetheless different from comparable Switch trials in
Experiment 1, we again fit an intercept-adjusted a logistic regres-
sion for each Referent x Interval condition, but included a
Condition (Switch vs. New Label) term: Correct � 1 +

Condition + offset(logit(1/Referents)). The Condition term
was reliably different from 0 in all conditions, indicating that partic-
ipants treated Switch and New Label trials differently (smallest
b ¼ :74; z ¼ 2:87, all ps 6.001). That is, participants recognized the
previous referents on New Label trials from their first exposure to
these referents, and further recognized that they had not
co-occured on their previous exposure with the New Label (bottom
row of Fig. 3). This is strong evidence that participants did indeed
encode word-object mappings for non-guessed referents even at
the highest number of Referents and at the longest Interval.

In addition, a mixed-effects logistic regression largely
reproduced the patterns observed in Experiment 1 (Table 2).
Performance on Same trials declined predominantly due to
Interval, but not due to number of Referents. In contrast, interval
had very little effect New Label trials—as was the case for Switch
trials in Experiment 1.

Taken together, these data are strong evidence that neither
the single-referent tracking nor the statistical accumulation
account of cross-situational word learning is correct.2 Instead,
cross-situational word learning is best characterized by a combina-
tion of both of these mechanisms. In the next section, we formalize
this idea.

3. Model

We begin by describing the computational-level learning prob-
lem posed by Experiment 1 using the model developed in Frank
et al. (2009). In this framework, the learner observes a set of situ-
ations S with the goal of determining the lexicon of word-object
mappings L that produced them PðLjSÞ. We can use Bayes’ rule to
describe the inferential computation the learner must perform:
2 One alternative explanation remains possible: Perhaps participants track word
and referent familiarity independently, and map familiar words to familiar referents
and unfamiliar words to unfamiliar referents, without ever linking the two. For an
additional control experiment that rules out this explanation, see Appendix A.
PðLjSÞ / PðSjLÞ PðLÞ ð1Þ

Each situation consists of two observed variables: objects (O) and
words (W). In addition, situations implicitly contain an additional
hidden variable: an intention (I) by the speaker to refer to one of
the objects. Thus, speakers first choose an object from the set and
then choose a referential label for it. The probability of a lexicon
is given as the joint probability of observing all of the words,
objects, and intentions given that lexicon, times the lexicon’s prior
probability:

PðLjSÞ /
Y
s2S

PðWs; Is;Os; jLÞ PðLÞ ð2Þ

Because the referential intention mediates the relationship between
words and objects (Frank et al., 2009), we can rewrite Eq. (2) using
the chain rule:

PðLjSÞ /
Y
s2S

PðWsjIs; LÞPðIsjOsÞ PðLÞ ð3Þ

To make predictions from this model, we need to define the
probabilities in Eq. (3). Following Frank et al. (2009), we propose
that the word (W) used to label the intended referent on each trial
is chosen uniformly from the set of all words in the lexicon for that
object (Lo). In addition, we propose a simple parsimony prior for
the lexicon: A priori, the larger the set of words in the lexicon that
refer to the same object O, the lower the probability of that lexicon:
PðLoÞ / 1

jLo j.

We can then take this computational-level description of the
problem and add cognitive constraints to understand how the pat-
terns observed in our data arise from the interaction of learning
mechanisms, attention, and memory (see e.g., Frank, Goldwater,
Griffiths, & Tenenbaum, 2010; Shi, Griffiths, Feldman, & Sanborn,
2010). We start by describing how participants allocate their atten-
tion on each learning trial, a critical point of difference between the
two different accounts of cross-situational learning.

In this framework, the most convenient place to integrate atten-
tion is in defining the learner’s beliefs about PðIjOÞ, the probability
of the speaker choosing to refer to each object in the set.3 One pos-
sibility is to let each object be equally likely to be the intended ref-
erent, implementing parallel Statistical Accumulation as in Frank
et al. (2009). Alternatively, the learner could place all of the probabil-
ity mass on one hypothesized referent – implementing a Single
Referent tracking strategy. A more flexible alternative is to assign
some probability mass r to the hypothesized referent, and divide
the remainder evenly among the remaining objects: 1�r

jOj�1. This

Integrated model subsumes the other two as special cases: At
3 A full process model should in principle include two distinct components: a
learner’s inferred beliefs about a speaker’s referential intention and the subsequent
decision to allocate attention on the basis of these beliefs. But these processes are
indistinguishable in our data, and consequently, we collapse them down to a single
parameter that controls allocation of attention; future work should distinguish them,
however.



Fig. 4. A representation of the continuum between the Statistical Accumulation and Single Referent Tracking models as learners’ attention is varied from evenly distributed
r ¼ 1

jOj

� �
to focused on a Single Referent (r ¼ 1), as well as the best-fitting Integrated model’s position along this continuum.

Table 3
Likelihood and Correlation measures for models on Experiments 1 and 2. The
Integrated model outperformed both of the individual accounts on all measures.

Model Log likelihood BIC E1 r2 E1 + 2 r2

Statistical Accumulation �6565 13,145 0.33 0.66
Single Referent �5950 11,915 0.83 0.77

Integrated �5590 11,203 0.95 0.97
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r ¼ 1, it is a Single Referent tracker, and at r ¼ 1
jOj, it is a parallel

Statistical Accumulator (Fig. 4).
There is some debate about the mechanisms that give rise to

attentional limitations (e.g. Wei, Wang, & Wang, 2012). In our for-
mulation, attention is treated as a continuous resource, but this
choice is a matter of convenience rather than a theoretical commit-
ment. For our purposes, the important question is to what extent
attention is focused on the single target referent, and a continuous
implementation allows parameter-estimation to answer this
question.

Next, we model how learners’ memories for observed situations
decay over time. We follow previous memory researchers by for-
malizing memory for a lexical entry as a power function of the inter-
val between successive exposures (Anderson & Schooler, 1991). As
with attention-allocation, there a number of successful models of
the underlying mechanisms that give rise to phenomena like the
power-law observed in human memory (e.g., Murdock, 1982;
Shiffrin & Steyvers, 1997). Again, the critical aspect for modeling
this data is to be consistent with the broader dynamics of human
memory, rather than with determining which model can best
account for these dynamics. Accordingly, memory for lexical entry
Lo decays according to a power function of time t in which c scales
the strength of initial encoding and k defines the rate of decay.

MðLoÞ ¼ c Lo t�k ð4Þ

Finally, we provide a choice rule describing how learners select
among the objects on each test trial. We propose that learners
choose the correct referent with probability proportional to their
memory for its lexical entry, and otherwise choose randomly
among the set of referents (Eq. (5)).4 We use this rule because all
of the competitors on both Same and Switch trials were novel, and
thus should have no trace in memory.

PðCorrectÞ ¼ MðLoÞ þ
1�MðLoÞ
jOj ð5Þ

We implemented our models in R 3.13 using version 2.60 of the
rstan package. Raw data for all participants presented in the paper
4 This formulation is equivalent to using Luce’s (Luce, 1959) Choice Axiom with the
target having strength MðLoÞ þ 1�MðLo Þ

jOj and each competitor having strength 1�MðLo Þ
jOj .
and R code for running the models are available in a github reposi-
tory at http://github.com/dyurovsky/XSIT-MIN. All three models—
Statistical Accumulation, Single Referent, and Integrated—were fit
to the data from Experiment 1 at the individual-participant level.
Best-fitting parameters for Experiment 1 for each model were esti-
mated by computing the mean value returned across 1000 samples.

While the Single Referent and Statistical Accumulation models
capture some of the structure in the data in Experiment 1, each
leaves significant variance unexplained. The Single Referent
Model cannot predict above-chance performance on Switch trials,
and the Statistical Accumulation model cannot predict a difference
between the Same and Switch trials. The Integrated model, how-
ever, predicts 95% of the variance in the data, and significantly out-
performs the other models in BIC comparisons as well—a metric
that trades off its superior performance against its one additional
parameter (Table 3). The one mismatch of the model to the data
was in Switch trial performance for the 3- and 4-Referent condi-
tions, in which the Integrated model predicted slightly lower per-
formance than that actually exhibited by participants.

We can use the models presented above, with parameters esti-
mated from Experiment 1, to make parameter-free predictions
about the data observed in Experiment 2. As before, the Single
Referent and Statistical Accumulation models predict some of the
variance in the new data, but leave much unexplained. The
Integrated model makes near-perfect predictions about the new
data—including the New Label condition—explaining 97% of the
combined variance in the data from Experiments 1 and 2
(Table 3). Fig. 5 presents model predictions for all experimental
data. Taken together, Experiments 1 and 2 and the Integrated
model results thus provide strong evidence that learners track
not only a single hypothesis for the most likely referent of a novel
word, but also some approximation to distributional statistics; an
approximation that becomes less precise as referential uncertainty
increases.
4. General discussion

For an ideal learner, word-object co-occurrence statistics con-
tain a wealth of information about meaning. But how is this infor-
mation used by human learners? One possibility is that learning is
fundamentally statistical, and we gradually accumulate distribu-
tional information across situations. Another possibility, however,
is that we track only a single, discrete hypothesis at any time.
While each of these accounts has some support in prior work, nei-
ther is consistent with all of the extant data.

Our results here suggest a synthetic explanation: The degree to
which learners represent statistical information depends on the
complexity of the learning situation. When there are many possi-
bilities, learners represent little about any candidate referent other
than the one that is currently favored; when there are few

http://github.com/dyurovsky/XSIT-MIN
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Fig. 5. Predictions of the Integrated model for all conditions in Experiment 1 and 2.
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possibilities, learners represent more. This account does not
depend on positing multiple, discrete learning systems. Instead,
the tradeoff between the most likely hypothesis and the alterna-
tives emerges from graded constraints on memory and attention.
Consistent with this account, when we manipulated the cognitive
demands of a cross-situational word learning paradigm, we found
a gradual shift in the fidelity with which alternatives were
represented.

This graded shift in representation was well-described by an
ideal learning model, but only when this model was modified to
take into account psychological constraints on attention and mem-
ory (Kachergis, Yu, & Shiffrin, 2012; Vlach & Johnson, 2013;
Yurovsky et al., 2014). This framework allowed us to estimate
the effects of these constraints on learning to find the model that
best fit the data—one intermediate between the two extreme poles
of parallel statistical accumulation and single-referent tracking.
This unifying account provides a route by which both hypotheses
and sensitivity to statistics can make complementary contributions
to word learning (Kachergis, Yu, & Shiffrin, 2013; Waxman &
Gelman, 2009).

Our account also provides some insight into the conflicting
results of previous experiments (Fig. 1). Because the amount of
information participants encode about each non-hypothesized ref-
erent falls of proportionally to the number of referents presented,
and because the amount of information participants remember
falls of proportionally to the interval between successive expo-
sures, statistical power to detect significant information falls of
rapidly as the task grows in complexity. Thus, our prediction is that
experiments that did not detect multiple-hypothesis tracking
might well have failed because such effects would have been very
small and would have required extremely large samples to distin-
guish from chance with any reliability. This pattern is further com-
plicated by interactions in the way that participants encode and
retrieve information as the same referents co-occur with multiple
different words (Yurovsky et al., 2014; Yurovsky et al., 2013).
Consequently, we believe that much of the previous confusion
has arisen from a combination of measurement and statistical
inference issues and a failure to appreciate the effects of particular
task parameters on the expected effect size.

The shift from a computational to an algorithmic (or, psycholog-
ical) description was critical in capturing the pattern of human
performance in our task (Marr, 1982; Frank et al., 2010;
Yurovsky et al., 2012). For the current model, we chose one princi-
pled instantiation of cognitive limitations based on previous work,
but there may be other consistent proposals. Indeed, the literature
contains a number of previous models of cross-situational learning
aimed at fitting human-level performance in varying learning
conditions with various instantiations of cognitive limitations
(e.g., Fazly, Alishahi, & Stevenson, 2010; Kachergis et al., 2012;
Smith et al., 2011; Tilles & Fontanari, 2013; Yurovsky et al.,
2014). Problematically, as demonstrated in a recent paper by Yu
and Smith (2012), these seemingly distinct models can perfectly
mimic each other at different parameter settings (see also,
Townsend, 1990). These authors note that modeling choices
peripheral to the central learning mechanism—e.g., attentional
allocation, memory, choice rule—can be varied to produce many
different patterns of learning.

Our goal in this paper was not to distinguish among these com-
peting models, or to ultimately rule them out. Instead, our goal was
to be agnostic as possible about the mechanisms underlying
cognitive constraints and to ask instead how such constraints pro-
duce variation in the fidelity of mapping representations. To facil-
itate these inferences, we fit a large set of parametrically-varying
data that imposes strong constraints on model parameters and
modeling choices. In addition, we prevented overfitting by
fixing model parameters using Experiment 1 and making
parameter-independent predictions about learning that were sup-
ported in Experiment 2. This approach allowed us to gain insight
about both the central learning mechanism and the constraining
processes that together determine human performance.

Although cross-situational learning has been proposed as a
potential acquisition mechanism for children (e.g. Pinker, 1989),
the majority of experimental work has focused on adults. While
children can learn from cross-situational evidence (Smith & Yu,
2008; Suanda et al., 2014; Vlach & Johnson, 2013), the mechanisms
underlying these inferences could well be different from those
operating in adults. Indeed, some recent findings suggest qualita-
tive differences between children and adults, specifically in scenar-
ios that require exclusion inferences (Ramscar, Dye, & Klein, 2013).
Any inference from adult data to children’s learning mechanisms
remains necessarily speculative.

Nonetheless, as more developmental data become available,
models like ours will be important tools in interpreting these data.
Adults and children differ substantially in general cognitive abili-
ties such as memory and attention (e.g. Gathercole, Pickering,
Ambridge, & Wearing, 2004; Lane & Pearson, 1982). Our model
suggests that even if there were continuity in learning mechanisms
across age, the representations underlying cross-situational learn-
ing might still seem to shift between childhood and adulthood. For
young children, even ‘‘simple’’ two-referent situations might be
sufficiently challenging to prevent strong representation of multi-
ple alternatives. Thus, interpretation of new data should be guided
by predictions for memory- and attention-constrained learners.

We further note that connecting experimental data from chil-
dren to the natural context of word learning may also require sub-
stantial work. Cross-situational learning experiments may impose
additional cognitive demands on children (e.g., encoding many
new words and unfamiliar objects) that are not representative of
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the familiar circumstances in which children’s word learning often
takes place. In natural speech to children, referents are introduced
into common ground and then discussed (Clark, 2003). In contrast,
cross-situational tasks are intentionally stripped of the constella-
tion of communicative, attentional, and linguistic cues that
typically surround naming events (Frank, Tenenbaum, & Fernald,
2013; Gogate, 2010; Mintz, 2003), and each naming event appears
in isolation, rather than being embedded in a coherent discourse
(Frank et al., 2013; Rohde & Frank, 2014).

Further, while cross-situational learning tasks have typically
studied the mapping process independent of the generalization
process, children’s representations of the meanings of even con-
crete nouns (e.g. cup) appear to follow an extended developmental
trajectory, changing well into young-adulthood (Ameel, Malt, &
Storms, 2008). This representational change is likely related to
variability in the exemplars children are exposed to, variability in
the contexts in which they are seen, and to the other words
children have learned and the kinds of hypotheses they have enter-
tained (Dautriche & Chemla, 2014; Hidaka & Smith, 2010). Thus, a
full understanding of the processes of early word learning will nec-
essarily require further analyses of the natural ecology of word
learning and how it changes across development. Nonetheless,
data and models of the kind presented here provide useful guiding
principles for understanding word learning in the wild.

In sum, our work stands as a case study of how ideal learning
models can inform psychological accounts of statistical learning.
Although we focused on noun learning, our results are relevant
for many problems in language, including phonetic category learn-
ing, speech segmentation, and grammar learning. In each of these
domains, researchers have debated the degree to which learners
represent distributional information (Endress, Scholl, & Mehler,
2005; Frank et al., 2010; McMurray, Kovack-Lesh, Goodwin, &
McEchron, 2013). We suggest a synthesis: Learning is fundamen-
tally distributional, but the fidelity of learners’ distributional esti-
mates depends critically on their limited attention and memory.
Table A1
Schematic of the design for Experiment 3. In contrast to Experiments 1 and 2, the test
trial (T-A) for each word pitted a previously co-occurring referent (a1) against a more
recently exposed familiar competitor referent (b2).

Trial Experiment 1 Experiment 2 Experiment 3

Word Ref 1 Ref 2 Word Ref 1 Ref 2 Word Ref 1 Ref 2

Ex-A A a1 a2 A a1 a2 A a1 a2
Ex-B B b1 b2 B b1 b2 B b1 b2
T-A A a1 a3 C a1 a3 A a1 b2

Table A2
Predictor estimates with standard errors and significance information for a logistic
mixed-effects model predicting word learning in Experiment 1. The model
was specified as Correct � Log(Referents) ⁄ Target + Log(Referents) ⁄
Competitor + offset(logit(1/Referents))+(TrialType | subject).

Predictor Estimate Std.
error

z
value

p
value

Intercept 3.27 0.45 7.27 <.001 ⁄⁄⁄

Log(Referents) �0.48 0.37 �1.32 0.19
Switch target �0.92 0.42 �2.17 0.03 ⁄

Switch competitor �1.77 0.40 �4.40 <.001 ⁄⁄⁄

Log(Referents) ⁄ Switch target �0.75 0.36 �2.07 0.04 ⁄

Log(Referents) ⁄ Switch
competitor

1.30 0.34 3.76 <.001 ⁄⁄⁄
Appendix A

Experiment 1 showed that participants encode multiple refer-
ents in ambiguous naming situations, even under high levels of
cognitive load. However, Experiment 1 leaves open the possibility
that while participants encoded multiple referents, they did not
map them to particular words. Experiment 2 was designed to rule
out this unimodal familiarity account, showing that in the presence
of a novel label, participants dispreferred the familiar object,
suggesting that they encoded words, referents, and something
about the relationship between them. However, these results are
in-principle consistent with an alternative account in which
participants track referent familiarity and word familiarity inde-
pendently, and use a complex choice rule that selects the most
familiar referent in the presence of a familiar word and the most
unfamiliar referent in the presence of a novel word. Experiment
3 was designed to test this account.

In Experiments 1 and 2, the set of candidate referents for each
word participants learned was distinct from the set of candidate
referents for every other word. This experimental choice prevented
participants from using knowledge about one word’s referent to
learn the correct referent of another novel word (c.f. Smith et al.,
2011; Yurovsky et al., 2013). Choosing to conduct the experiment
this way both allowed us to produce better estimates of learning
fidelity across conditions and simplified the choice rule necessary
for our cognitive model. In Experiment 3, we relax this constraint,
however, allowing a more stringent test of the alternative account
above. This time, the test set for each word contained both a
previously co-occurring (and thus statistically correct) referent,
and a referent that had been seen more recently, but had
co-occurred with a different word. In this way, Experiment 3
directly pitted statistical co-occurrence information against uni-
modal word and referent familiarity.

A.1. Method

Table A1 shows a design diagram comparing Experiment 3 to
Experiments 1 and 2. In Experiment 3, participants again received
two trials for each novel word. On the exposure trial (Ex-A), as
before, they selected one of the candidate referents. On the test
trial for each word (T-A), the set of candidate referents contained
one that participants had previously seen on the Exposure trial
for that word (a1), and one of the referents from the Exposure trial
for the intervening word (b2). Our mapping account of the data in
Experiments 1 and 2 predicts that participants should select the
referent that co-occurred previously with the tested word (a1). In
contrast, a familiarity account of the previous data predicts that
participants should select the referent that co-occurred with the
intervening word (b2).

As in the other experiments, we were interested in how learn-
ing scales both with the number of referents and with participants’
guesses on Exposure trials. We thus tested two referent sizes
between subjects: 2 and 4. We also tested all four possible combi-
nations of guesses on Exposure trials for the two critical words
within-subjects. That is, we compared the referent participants
selected on Ex-A to the referent participants selected on Ex-B
(Same vs. Same), the referent participants selected on Ex-A to a ref-
erent they did not select on Ex-B (Same vs. Switch), etc.

A.1.1. Participants
As in Experiments 1 and 2, participants for Experiment 3 were

recruited from Amazon Mechanical Turk under the constraint that
they had a US IP address. Each HIT paid 30 cents for completion.
Because Experiment 3 contained fewer trials per within-subjects
condition than Experiments 1 and 2, we posted 250 HITs for each
Referent condition for a total of 500 paid HITS. Participants were
again paid for multiple HITs, but only data from their first was
included in the final set (excluded 8 HITs) and an additional HIT
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Fig. A1. Proportion of participants choosing the Correct (co-occurring) and Familiar (most recently seen) referent for each of the four trial types in Experiment 3. Each
datapoint represents �230 participants. Error bars indicate 95% confidence intervals computed by non-parametric bootstrap. In all cases, participants chose the Correct
referent at above chance levels, and also significantly more often than the Familiar referent, indicating that they learned a mapping between words and objects even on
Switch trials. Performance decreased predictably when the number of referents increased and when the Correct referent was the one not selected by participants on Exposure
trials (Switch vs. X).

5 Although participants did not receive feedback, one might nonetheless be
concerned that because the Correct referent in this task was always the referent
that was seen two trials ago, participants’ above-chance performance on this task
might have been due to learning a meta-strategy of selecting the referent from two
trials ago. Such an account would predict increased performance over the course of
the experiment as participants discovered this strategy. To test this alternative, we
added an additional term to the mixed-effects model: Trial number. This regression
showed a statistically significant decrease in performance over the course of the
experiment (smallest b ¼ �:132; z ¼ �4:93; p < :001), ruling out this account.
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was posted. In addition, data was again excluded from the final
sample if participants did not give correct answers for familiar
trials (35 HITs). The final sample thus comprised 465 unique
participants, 234 in the 2 Referents condition and 231 in the 4
Referents condition.

A.1.2. Stimuli, design, and procedure
Experiment 3 used the same Stimuli and general trial structure

as Experiments 1 and 2 (Table A1). Each participant received either
the 2 Referents or the 4 Referents condition. Each participant was
exposed to 8 words, 4 of which were tested and 4 of which pro-
vided the Familiar competitors. One of the words was tested in
each possible Target vs. Competitor condition (Same v. Same,
Same vs. Switch, Switch vs. Same, Switch vs. Switch). In all cases,
one Competitor Exposure trial (Ex-B) occurred between the
Exposure and Test trials for the Target word, as in the Interval 2
conditions of Experiments 1 and 2.

A.2. Results

Do learners encode mappings for multiple candidate referents,
or do they instead encode words and referents independently? If
participants encoded mappings, we would expect them to select
the Correct referent more frequently than expected by chance on
test trials, even when the Correct referent was one they did not
previously select on its Exposure trial. To test this prediction, we
again fit adjusted logistic regressions to each condition
(Correct� 1 + offset(logit(1/Referents))). For both 2 and
4 Referents, for all test types, participants selected the Correct ref-
erent at levels higher than predicted by chance (smallest
b ¼ :58; z ¼ 4:25, all ps <.001). In the 2 Referent condition, this
necessarily means that they chose the Correct referent more fre-
quently than the Familiar referent, as these were the only two
options at test. However, in the 4 Referents condition, two other
novel competitors were available. To show that participants distin-
guished between the Correct and Familiar referents in this condi-
tion, we need to further show that they were chosen at different
rates We thus fit an adjusted logistic regression to determine
whether Referent type was a significant predictor of performance
(Correct � 1 + Type + offset(logit(1/Referents))). Indeed, for all test
types, the Correct referent was chosen more frequently than the
Familiar referent (smallest b ¼ :61; z ¼ 3:09, all ps <.01). Thus,
learners encoded more multiple word-referent mappings, and
not just multiple words and referents (Fig. A1).

To examine differences across the conditions we tested, we fit a
mixed-effects model to determine how performance varied with
test type and number of Referents (Table A2). This model showed
a significant Intercept term, indicating globally above-chance
selection of Correct referents. It further showed significant main
effects Target Type, and Competitor Type, indicating that partici-
pants performed best when both the Target and Competitor were
referents they had previously hypothesized on Exposure trials.
Finally, the model showed significant interactions between both
Target and Competitor types and number of Referents, indicating
that at 4 Referents the identity of the Target referent had more
effect than the identity of the Competitor referent.5

In sum, the results of Experiment 3 provide strong support for
the account of Experiments 1 and 2 given in the main text: when
encountering a novel word, participants in these experiments
encoded both their hypothesized referent, and multiple additional
referents at above chance levels. Even when the correct referent at
test was one that participants had seen but not hypothesized (as in
Switch trials in Experiment 1), and even when one of the competi-
tors was seen more recently and thus more familiar, participants
selected the correct referent at above chance levels. Further, as in
the previous Experiments, performance tracked predictably with
both the number of Referents in training and whether the Target
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(and Competitor) referent was previously selected by participants
on Exposure trials. These results thus provide further support for
an Integrated model of cross-situational learning in which people
encode both a strong single hypothesis and weaker but reliable dis-
tributional information about alternative candidate referents.
References

Ameel, E., Malt, B., & Storms, G. (2008). Object naming and later lexical
development: From baby bottle to beer bottle. Journal of Memory and
Language, 58, 262–285.

Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory.
Psychological Science, 2, 396–408.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with
crossed random effects for subjects and items. Journal of Memory and Language,
59, 390–412.

Blythe, R. A., Smith, K., & Smith, A. D. M. (2010). Learning times for large lexicons
through cross-situational learning. Cognitive Science, 34, 620–642.

Bower, G., & Trabasso, T. (1963). Reversals prior to solution in concept
identification. Journal of Experimental Psychology, 66, 409–418.

Clark, E. V. (2003). First language acquisition. Cambridge University Press.
Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s

Mechanical Turk as a tool for experimental behavioral research. PLOS One, 8,
e57410.

Dautriche, I., & Chemla, E. (2014). Cross-situational word learning in the right
situations. Journal of Experimental Psychology: Learning, Memory, and Cognition,
40, 892–903.

Endress, A. D., Scholl, B. J., & Mehler, J. (2005). The role of salience in the extraction
of algebraic rules. Journal of Experimental Psychology: General, 134, 406–419.

Fazly, A., Alishahi, A., & Stevenson, S. (2010). A probabilistic computational model of
cross-situational word learning. Cognitive Science, 34, 1017–1063.

Frank, M. C., Goldwater, S., Griffiths, T. L., & Tenenbaum, J. B. (2010). Modeling
human performance in statistical word segmentation. Cognition, 117, 107–125.

Frank, M. C., Goodman, N., & Tenenbaum, J. (2009). Using speakers’ referential
intentions to model early cross-situational word learning. Psychological Science,
20, 578–585.

Frank, M. C., Tenenbaum, J. B., & Fernald, A. (2013). Social and discourse
contributions to the determination of reference in cross-situational word
learning. Language Learning and Development, 9, 1–24.

Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: Implications of
a quantitative analysis. Proceedings of the National Academy of Sciences, 101,
13124–13131.

Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of
working memory from 4 to 15 years of age. Developmental Psychology, 40, 177.

Gogate, L. J. (2010). Learning of syllable–object relations by preverbal infants: The
role of temporal synchrony and syllable distinctiveness. Journal of Experimental
Child Psychology, 105, 178–197.

Gómez, R. L., & Gerken, L. (2000). Infant artificial language learning and language
acquisition. Trends in Cognitive Sciences, 4, 178–186.

Hidaka, S., & Smith, L. B. (2010). A single word in a population of words. Language
Learning and Development, 6, 206–222.

Johnson, E. K., & Tyler, M. D. (2010). Testing the limits of statistical learning for word
segmentation. Developmental Science, 13, 339–345.

Kachergis, G., Yu, C., & Shiffrin, R. M. (2012). An associative model of adaptive
inference for learning word-referent mappings. Psychonomic Bulletin & Review,
19, 317–324.

Kachergis, G., Yu, C., & Shiffrin, R. M. (2013). Actively learning object names across
ambiguous situations. Topics in Cognitive Science, 5, 200–213.

Kanwisher, N., Woods, R. P., Iacoboni, M., & Mazziotta, J. C. (1997). A locus in human
extrastriate cortex for visual shape analysis. Journal of Cognitive Neuroscience, 9,
133–142.

Lane, D. M., & Pearson, D. A. (1982). The development of selective attention. Merrill-
Palmer Quarterly, 28, 317–337.

Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. New York, NY:
Wiley.

Marr, D. (1982). Vision: A computational investigation into the human representation
and processing of visual information. New York, NY: W.H. Freeman.
McMurray, B., Horst, J. S., & Samuelson, L. K. (2012). Word learning emerges from
the interaction of online referent selection and slow associative learning.
Psychological Review, 119, 831–877.

McMurray, B., Kovack-Lesh, K. A., Goodwin, D., & McEchron, W. (2013). Infant
directed speech and the development of speech perception: Enhancing
development or an unintended consequence? Cognition, 129, 362–378.

Medina, T. N., Snedeker, J., Trueswell, J. C., & Gleitman, L. R. (2011). How words can
and cannot be learned by observation. Proceedings of the National Academy of
Sciences, 108, 9014–9019.

Mintz, T. H. (2003). Frequent frames as a cue for grammatical categories in child
directed speech. Cognition, 90, 91–117.

Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative
information. Psychological Review, 89, 609–626.

Pinker, S. (1989). Learnability and cognition: The acquisition of argument structure.
Cambridge, MA: MIT Press.

Ramscar, M., Dye, M., & Klein, J. (2013). Children value informativity over logic in
word learning. Psychological Science, 24, 1017–1023.

Reisenauer, R., Smith, K., & Blythe, R. A. (2013). Stochastic dynamics of lexicon
learning in an uncertain and nonuniform world. Physical Review Letters, 110,
258701.

Rohde, H., & Frank, M. C. (2014). Markers of topical discourse in child-directed
speech. Cognitive Science, 38, 1634–1661.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old
infants. Science, 274, 1926–1928.

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM –
retrieving effectively from memory. Psychonomic Bulletin & Review, 4, 145–166.

Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a
mechanism for performing Bayesian inference. Psychonomic Bulletin & Review,
17, 443–464.

Siskind, J. M. (1996). A computational study of cross-situational techniques for
learning word-to-meaning mappings. Cognition, 61, 39–91.

Smith, K., Smith, A. D. M., & Blythe, R. A. (2011). Cross-situational learning: An
experimental study of word-learning mechanisms. Cognitive Science, 35,
480–498.

Smith, L. B., & Yu, C. (2008). Infants rapidly learn word-referent mappings via cross-
situational statistics. Cognition, 106, 1558–1568.

Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms
for name agreement, image agreement, familiarity, and visual complexity.
Journal of Experimental Psychology: Human Learning and Memory, 6, 174–215.

Suanda, S. H., Mugwanya, N., & Namy, L. L. (2014). Cross-situational statistical word
learning in young children. Journal of Experimental Child Psychology, 126,
395–411.

Tilles, P. F., & Fontanari, J. F. (2013). Reinforcement and inference in cross-
situational word learning. Frontiers in Behavioral Neuroscience, 7.

Townsend, J. T. (1990). Serial vs. parallel processes: Sometimes they look like
Tweedledum and Tweedledee but they can (and should) be distinguished.
Psychological Science, 1, 46–54.

Trueswell, J. C., Medina, T. N., Hafri, A., & Gleitman, L. R. (2013). Propose but verify:
Fast mapping meets cross-situational learning. Cognitive Psychology, 66,
126–156.

Vlach, H. A., & Johnson, S. P. (2013). Memory constraints on infants’ cross-
situational statistical learning. Cognition, 127, 375–382.

Vouloumanos, A. (2008). Fine-grained sensitivity to statistical information in adult
word learning. Cognition, 107, 729–742.

Waxman, S. R., & Gelman, S. A. (2009). Early word-learning entails reference, not
merely associations. Trends in Cognitive Science, 13, 258–263.

Wei, Z., Wang, X.-J., & Wang, D.-H. (2012). From distributed resources to limited
slots in multiple-item working memory: A spiking network model with
normalization. The Journal of Neuroscience, 32, 11228–11240.

Yurovsky, D., Fricker, D. C., Yu, C., & Smith, L. B. (2014). The role of partial knowledge
in statistical word learning. Psychonomic Bulletin & Review, 21, 1–22.

Yurovsky, D., Yu, C., & Smith, L. B. (2012). Statistical speech segmentation and word
learning in parallel: Scaffolding from child-directed speech. Frontiers in
Psychology, 3, 374.

Yurovsky, D., Yu, C., & Smith, L. B. (2013). Competitive processes in cross-situational
word learning. Cognitive Science, 37, 891–921.

Yu, C., & Smith, L. B. (2007). Rapid word learning under uncertainty via cross-
situational statistics. Psychological Science, 18, 414–420.

Yu, C., & Smith, L. B. (2012). Modeling cross-situational word-referent learning:
Prior questions. Psychological Review, 119, 21–39.

http://refhub.elsevier.com/S0010-0277(15)30039-1/h0005
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0005
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0005
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0010
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0010
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0015
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0015
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0015
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0020
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0020
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0025
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0025
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0030
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0035
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0035
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0035
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0040
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0040
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0040
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0045
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0045
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0050
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0050
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0055
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0055
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0060
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0060
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0060
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0065
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0065
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0065
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0070
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0070
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0070
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0075
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0075
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0080
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0080
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0080
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0085
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0085
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0090
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0090
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0095
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0095
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0100
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0100
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0100
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0105
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0105
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0110
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0110
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0110
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0115
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0115
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0120
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0120
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0125
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0125
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0130
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0130
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0130
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0135
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0135
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0135
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0140
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0140
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0140
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0145
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0145
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0150
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0150
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0155
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0155
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0160
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0160
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0165
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0165
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0165
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0170
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0170
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0175
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0175
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0180
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0180
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0185
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0185
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0185
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0190
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0190
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0195
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0195
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0195
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0200
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0200
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0205
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0205
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0205
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0210
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0210
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0210
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0215
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0215
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0220
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0220
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0220
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0225
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0225
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0225
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0230
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0230
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0235
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0235
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0240
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0240
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0245
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0245
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0245
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0250
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0250
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0255
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0255
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0255
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0260
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0260
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0265
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0265
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0270
http://refhub.elsevier.com/S0010-0277(15)30039-1/h0270

	An integrative account of constraints on cross-situational learning
	1 Experiment 1
	1.1 Method
	1.1.1 Participants
	1.1.2 Stimuli
	1.1.3 Design and procedure

	1.2 Results

	2 Experiment 2
	2.1 Method
	2.1.1 Participants
	2.1.2 Stimuli, design, and procedure

	2.2 Results

	3 Model
	4 General discussion
	Appendix A 
	A.1 Method
	A.1.1 Participants
	A.1.2 Stimuli, design, and procedure

	A.2 Results

	References


